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(4) Introduction

Previous studies have found that there is a strong correlation between mammographic
breast density and the risk of breast cancer. Mammaographic breast density has been used by
researchers in many studies to estimate breast cancer risk of epidemiological factors, monitor the
effects of preventive treatments such as tamoxifen or dietary interventions, monitor the breast
cancer risk of hormone replacement therapy, and investigate factors affecting mammographic
sensitivity and cancer prognosis. However, most studies used Breast Imaging Reporting and
Data System (BI-RADS) density rating as a measure of mammographic breast density, which
contributes large inter- and intraobserver variations and may reduce the sensitivity of the
analysis.

The goal of this proposed project is to develop a fully automated technique to assist
radiologists in estimating mammaographic breast density. We hypothesize that the computerized
technique can accurately and efficiently segment the dense area on digitized or digital
mammograms, thereby eliminating inter- and intra-observer variations. The dense area as a
percentage of total breast area thus estimated will be more consistent and reproducible than
radiologists' subjective BI-RADS rating. To accomplish this goal, we will (1) collect a large
database of mammograms, including digitized film mammograms and digital mammograms, for
training and testing the dense area segmentation program; (2) evaluate the correlation between
the radiologists' breast density classification based on BI-RADS lexicon and the percent breast
dense area; (3) study the correlation of percent breast dense area between different views of the
same breast and between the same view of the two breasts; and (4) investigate the correlation
between the percent breast dense area estimated from mammograms and the volumetric dense
breast tissue estimated from a data set of magnetic resonance (MR) breast images. These
comparisons will provide important information regarding the consistency of the BI-RADS
rating with the measured percent breast dense area, the appropriate measure of % dense area
from different mammographic views, and the usefulness of using the percent breast dense area
on mammograms as an indicator of volumetric breast tissue density.

It is expected that this project will produce a fully automated and effective tool for
analysis of mammographic breast density, which can be applied to routinely acquired
mammograms without special calibrations. This will facilitate studies of various factors
associated with breast cancer risk and mammaographic sensitivity, and monitoring the effects of
interventional or preventive strategies. The image analysis tool will therefore contribute to the
understanding of the relationship of density to breast cancer risk, detection, prognosis, and to the
prevention and treatment of breast cancer.
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(5) Body

This is the final report of the project. We have described in detail the results of our
studies in the past annual progress reports. The investigations conducted in this project are
summarized in the following.

(A)  Collection of a Database of Full Field Digital Mammograms (DMs) and Digitized
Mammograms (DFM)

With IRB approval, we have collected a database of full field direct digital mammograms
(DM) and a database of screen-film mammograms (DFM). The database of DMs contained
about 290 cases with over 580 pairs of DMs. The database of DFMs included about 380 cases
with over 760 DFMs. The data sets were used for the development of the breast density analysis
tools for DMs and DFMs.

(B)  Automated Breast Density Analysis System for Digitized Mammograms

We developed an automated image analysis tool Mammographic Density ESTimator
(MDEST), to assist radiologists in estimating breast density in terms of percent dense area on
mammograms. MDEST performs dynamic range compression, breast boundary tracking,
pectoral muscle segmentation for the MLO view, automatic thresholding based on gray level
histogram analysis, and calculates the percent dense area on a mammogram. In our study, we
found that the correlation between the computer-estimated percent dense area and radiologists’
manual segmentation was 0.94 and 0.91, respectively, for CC and MLO views, with a mean bias
of less than 2%. These results indicated that the automated image analysis tool can be an
efficient and reproducible method for breast density segmentation. (Publications J1, J2, J3, P1,
P2, Al, A2, A3, A6, A8)

(C)  Correlation between Percent Dense Area and Percent Volumetric Fibroglandular
Tissue

We performed a comparison between fibroglandular tissue volume segmented from 3-
dimensional MR images and the percent dense area estimated on corresponding DFMs. The
correlation of manually segmented percent dense area of the CC and MLO views by radiologists
with the percent volumetric fibroglandular tissue on MR images was found to be 0.91 and 0.91,
respectively. The correlation of automated MDEST segmented percent dense area of the CC and
MLO views with the percent volumetric fibroglandular tissue on MR images was found to be
0.91 and 0.89, respectively. The mean differences between the percent dense area and the MR
percent volumetric density range from 3% to 6%. The high correlation indicated that the percent
dense area on mammograms can be used as a surrogate for monitoring breast density changes.
(Publications J2, P1, Al, A3)

(D)  Correlation between Breast Density estimated on Digitized Screen-Film
Mammograms and Full Field Digital Mammograms

We studied the correlation between the percent dense area estimated on DFMs and DMs.
Pairs of two-view DFM and DM from 99 patients were used. All mammograms were manually
segmented by 5 experienced breast radiologists using a graphical user interface developed in this
project. The mean difference in the segmented density between DFMs and DMs was about 3.5%
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and the mean ratio was about 1.30, indicating that the mammographic density was about 30%
higher, on average, on the DFMs. The difference in the mammographic density may be
attributed to the harder beam quality used and the digital image processing applied to the DMs.
The lower density may improve the mammographic sensitivity for lesion detection on dense
breasts. However, for patients with DFMs and DMs taken over time, comparison of serial
mammograms for breast density changes will be problematic. (Publications A4)

(E)  Automated Breast Density Analysis System for Digital Mammograms

The MDEST system was originally developed using DFMs. To adapt the system to DMs,
we incorporated an Expectation-Maximization (EM) algorithm to extract gray level features
from the histogram. A rule-based classifier was trained to estimate a gray level threshold for
segmenting the dense area from the breast region adaptively. The performance of the MDEST
system for DMs was improved after the incorporation of the EM estimation and re-training. The
correlation between the computer-estimated percent dense area and the radiologists’ manual
segmentation improved from 0.85 and 0.87 to 0.94 and 0.92, respectively, for CC and MLO
views. The root-mean-square (RMS) errors improved from 7.3% and 5.7% to 4.2 and 4.4%,
respectively, for CC and MLO views. (Publications P2, A5, A6, A8)

(F)  Breast Segmentation: Breast Boundary Detection and Pectoral Muscle Trimming

Breast density estimation depends strongly on the accuracy of breast boundary
segmentation and, for the MLO view, pectoral muscle segmentation. We developed an improved
breast boundary tracking method using Sobel edge detection in combination with multiple edge
thresholding to generate contour images and active contour for segmentation. For the detection
of pectoral boundary, we developed a method that included gradient-based directional filtering,
gradient-based texture analysis to generate an orientation image, mean shift smoothing, and
ridge-tracking. For a data set of 118 MLO view mammograms, the new method identified
99.2% of the pectoral muscles. (Publications P3, A7)

(G) Comparison of Mammographic Density by MDEST Radiologists’ Estimates and
BI-RADS Categories

The fully-automated MDEST computer program was used to estimate breast density on
digitized mammograms from 65 women, ages 24-89 (mean = 53). Five breast radiologists
prospectively assigned qualitative BI-RADS density categories and visually estimated percent
density of 260 mammograms. Qualitative BI-RADS assessments were compared to new
quantitative BI-RADS standards. The reference standard density for this study was established
by allowing the 5 radiologists to manipulate the MDEST gray level threshold, which segmented
mammograms into dense and non-dense areas. It was found that there was close correlation
between the reference standard and radiologist-estimated density (correlation =.90-.95) and
MDEST density (correlation = 0.89). MDEST had tighter agreement with the reference
standard, with an average overestimate of 1% (-15% to +18%). MDEST correlated better with
percent density than qualitative BI-RADS categories. There was large overlap and range of
percent density in qualitative BI-RADS categories 2 through 4. Qualitative BI-RADS categories
correlated poorly with the new quantitative BI-RADS categories. 6% (16/260) of views were
erroneously classified by MDEST. This study indicated that MDEST compared favorably to
radiologist estimates of percent density, and is more reproducible than radiologist estimates
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using qualitative BI-RADS density categories. Qualitative and quantitative BI-RADS density
assessments differed markedly. (Publication J3)

(6) Key Research Accomplishments

e Collected over 670 cases digitized film mammograms and digital mammograms for
development of the automated density segmentation program (Task 1).

e Developed an automated image analysis tool Mammographic Density ESTimator (MDEST)
for estimation of the percentage of breast dense area on mammograms. (Task 2)

e Evaluated the segmentation accuracy by comparison with radiologists” manual segmentation
and found that the correlation between the computer-estimated percent dense area and
radiologists” manual segmentation was 0.94 and 0.91, respectively, for CC and MLO views,
with a mean bias of less than 2%. (Task 2)

e Evaluated correlation between mammographic density and BI-RADS density ratings and
found that there was a close correlation between the reference standard and radiologist-
estimated density (R=.90-.95) and MDEST density (R = 0.89). MDEST correlated better
with percent density than qualitative BI-RADS categories. (Task 2)

e Evaluated correlation between mammaographic density and volumetric density measurement
with MR breast images and found that the correlation of automated MDEST segmented
percent dense area of the CC and MLO views with the percent volumetric fibroglandular
tissue on MR images was 0.91 and 0.89, respectively. The mean differences between the
percent dense area and the MR percent volumetric density ranged from 3% to 6%. (Task 3)

e Evaluated the correlation between mamomgraphic density estimated on DFMs and DMs and
found that the mean difference in the segmented density between DFMs and DMs was about
3.5% and the mean ratio was about 1.30, indicating that the mammographic density was
about 30% higher, on average, on the DFMs. (Tasks 2 and 4)

e Adapted the MDEST density segmentation system to digital mammograms successfully and
the system now can be applied to both modalities (Task 4)

e Compared automated density segmentation results on DMs with radiologists’ manual
segmentation and found that the correlation between the computer-estimated percent dense
area and the radiologists’ manual segmentation was 0.94 and 0.92, respectively, for CC and
MLO views. The root-mean-square (RMS) errors were 4.2 and 4.4%, respectively, for CC
and MLO views (Task 4).

e Developed a breast boundary detection method and a pectoral muscle trimming method to
improve the accuracy of breast area estimation for calculation of percent dense area. For a
data set of 118 MLO view mammograms, the pectoral muscle trimming method identified
99.2% of the pectoral muscles (Task 2 and Task 4).
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(7)  Reportable Outcomes

As a result of the support by the USAMRMC BCRP grant, we have developed an
automated breast density analysis system for both DMs and DFMs. We have also developed
graphical user interfaces for interactive thresholding of breast density on mammograms by
radiologists efficiently. The results of these investigations have been presented in international
conferences or published in peer-reviewed journals. The publications from this project are listed
below. Many of these have been reported in the annual reports.

Journal Articles:

J1. Zhou C, Chan HP, Petrick N, Helvie MA, Goodsitt MM, Sahiner B, Hadjiiski LM.
Computerized image analysis: Estimation of breast density on mammograms. Medical
Physics 2001; 28: 1056-1069.

J2. Wei J, Chan HP, Helvie MA, Roubidoux MA, Sahiner B, Hadjiiski L, Zhou C,
Paquerault S, Chenevert T, Goodsitt MM. Correlation between Mammographic Density
and Volumetric Fibroglandular Tissue Estimated on Breast MR Images. Medical Physics
2004; 31: 933-942.

J3. Martin KE, Helvie MA, Zhou C, Roubidoux MA, Bailey JE, Paramagul C, Blane CE,
Klein K, Sonnad S, Chan HP. Mammographic density measured by an automatic
computer-aided quantitative method: Comparison with radiologists’ estimates and Bl-
RADS categories. Radiology 2006; 240: 656-665.

Conference Proceeding:

P1.  Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B,
Chenevert T, Goodsitt MM. Breast density estimation: correlation of mammographic
density and MR volumetric density. In: Digital Mammography IWDM 2002: 6th
International Workshop on Digital Mammography. Ed. Peitgen HO. (Springer, Berlin)
2003: 281-284.

P2.  Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski
LM, Sahiner B. Performance evaluation of an automated breast density estimation system
for digital mammograms and digitized film mammograms. In: Digital Mammography
IWDM 2004: 7th International Workshop on Digital Mammography. Ed. Pisano E. 425-
429.

P3.  Zhou C, Hadjiiski LM, Paramagul C, Sahiner B, Chan HP, Wei J. Computerized pectoral
muscle identification on MLO-view mammograms for CAD applications. Proc SPIE
5747; 2005: 852-857.

Conference Abstracts and Presentations:
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Al.

A2.

A3.

A4,

A5.

AG.

AT.

A8.

Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B,
Chenevert T, Goodsitt MM. Breast density estimation: correlation of mammographic
density and MR volumetric density. Poster presentation at the 6th International
Workshop on Digital Mammography. IWDM-2002. Bremen, Germany. June 22-25,
2002.

Chan HP, Helvie MA, Wei J, Hadjiiski LM, Zhou C, Goodsitt MM, Sahiner B,
Roubidoux MA. Automated analysis of mammographic breast density for breast cancer
risk estimation. Presented at the Era of Hope Meeting, U. S. Army Medical Research and
Materiel Command, Department of Defense, Breast Cancer Research Program, Orlando,
Florida, September 25-28, 2002.

Wei J, Chan HP, Helvie MA, Hadjiiski LM, Sahiner B, Roubidoux MA, Zhou C,
Paquerault S, Chenevert T, Goodsitt MM. Breast density estimation on mammograms
and MR images: A tool for assessment of breast cancer risk. Presentation at the 88"
Scientific Assembly and Annual Meeting of the Radiological Society of North America,
Chicago, IL, December 1-6, 2002. Radiology 2002; 225(P): 600.

Chan HP, Wei, J, Zhou C, Helvie MA, Roubidoux MA, Bailey J, Paramagul C, Nees A,
Hadjiiski LM, Sahiner B. Comparison of mammographic density estimated on digital
mammograms and screen-film mammograms. Presentation at the 89" Scientific
Assembly and Annual Meeting of the Radiological Society of North America, Chicago,
IL, November 30-December 5, 2003. RSNA Program 2003; 424.

Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Helvie MA, Wei, J. Computerized
mammographic breast density estimation: Expectation-Maximization estimation and
neural network classification of breast density. Presented at the 89" Scientific Assembly
and Annual Meeting of the Radiological Society of North America, Chicago, IL,
November 30-December 5, 2003. RSNA Program 2003; 389.

Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski
LM, Sahiner B. Performance evaluation of an automated breast density estimation system
for digital mammograms and digitized film mammograms. Presented at the 7th
International Workshop on Digital Mammography. IWDM-2004. Durham, North
Carolina. June 18-21, 2004.

Zhou C, Hadjiiski LM, Paramagul C, Sahiner B, Chan HP, Wei J. Computerized pectoral
muscle identification on MLO-view mammograms for CAD applications. Poster
presentation at the SPIE International Symposium on Medical Imaging, San Diego, CA,
February 12-17, 2005.

Zhou C, Chan HP, Helvie MA, Wei J, Ge J, Hadjiiski LM, Sahiner B, Computerized
mammographic breast density estimation on full field digital mammogram and digitized
film mammogram. Presentation at the 91% Scientific Assembly and Annual Meeting of
the Radiological Society of North America, Chicago, IL. November 27-December 2,
2005. RSNA Program 2005; 271.
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(8) Conclusions

We have developed an automated mammographic density segmentation system, referred
to as Mammographic Density ESTimator (MDEST), for both DMs and DFMs. Our studies
showed that the automated MDEST system can provide percent dense area estimates that are
highly correlated with radiologists’ interactive thresholding results and the percent volumetric
fibroglandular tissue estimates from MR breast images. The quantitative estimates are superior
to the radiologists’ qualitative BI-RADS density assessment. The MDEST system can provide a
consistent and reproducible estimation of percent dense area on routine clinical mammograms.
This will facilitate studies of various factors associated with breast cancer risk and
mammographic sensitivity, and monitoring the effects of interventional or preventive strategies.
The image analysis tool will therefore contribute to the understanding of the relationship of
density to breast cancer risk, detection, prognosis, and to the prevention and treatment of breast
cancers.
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1. Zhou C, Chan HP, Petrick N, Helvie MA, Goodsitt MM, Sahiner B, Hadjiiski LM.
Computerized image analysis: Estimation of breast density on mammograms. Medical
Physics 2001; 28: 1056-1069.
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Computerized image analysis: Estimation of breast density
on mammograms

Chuan Zhou, Heang-Ping Chan,? Nicholas Petrick, Mark A. Helvie, Mitchell M. Goodsitt,
Berkman Sahiner, and Lubomir M. Hadjiiski
Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0030

(Received 15 September 2000; accepted for publication 4 April )2001

An automated image analysis tool is being developed for the estimation of mammographic breast
density. This tool may be useful for risk estimation or for monitoring breast density change in
prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms
from 65 patients was used to evaluate our approach. Breast density analysis was performed on the
digitized mammograms in three stages. First, the breast region was segmented from the surrounding
background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic
range compression technique was applied to the breast image to reduce the range of the gray level
distribution in the low frequency background and to enhance the differences in the characteristic
features of the gray level histogram for breasts of different densities. Third, rule-based classification
was used to classify the breast images into four classes according to the characteristic features of
their gray level histogram. For each image, a gray level threshold was automatically determined to
segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage
of the breast area was then estimated. To evaluate the performance of the algorithm, the computer
segmentation results were compared to manual segmentation with interactive thresholding by five
radiologists. A “true” percent dense area for each mammogram was obtained by averaging the
manually segmented areas of the radiologists. We found that the histograms & 6% and 8

MLO views) of the breast regions were misclassified by the computer, resulting in poor segmen-
tation of the dense region. For the images with correct classification, the correlation between the
computer-estimated percent dense area and the “truth” was 0.94 and 0.91, respectively, for CC and
MLO views, with a mean bias of less than 2%. The mean biases of the five radiologists’ visual
estimates for the same images ranged from 0.1% to 11%. The results demonstrate the feasibility of
estimating mammographic breast density using computer vision techniques and its potential to
improve the accuracy and reproducibility of breast density estimation in comparison with the
subjective visual assessment by radiologists. 2@1 American Association of Physicists in Medi-

cine. [DOI: 10.1118/1.1376640

Key words: mammography, computer-aided diagnosis, breast density, breast cancer risk, image
segmentation, thresholding

[. INTRODUCTION ing a CAD system for an analysis of breast density on mam-
mograms. Studies have shown that there is a strong positive

aébrrelation between breast parenchymal density on mammo-

ity among womert.One in every eight women will develop rams and breast cancer rfSR.The relative risk is estimated

breast cancer at some point in their lives. The most succes?— . .
. . 0 be about 4 to 6 times higher for women whose mammo-
ful method for the early detection of breast cancer is screen-

it 0,
ing mammography. Currently, mammograms are analyzegrams have parenchymal densities over 60% of the breast

i 0 -
visually by radiologists. Because of the subjective nature ofi'éa as compared to women with less than 5% of parenchy

visual analysis, qualitative responses may vary from radiolomal de_nsmes. . . _
An important difference between breast density as a risk

gist to radiologist. Therefore, a computerized method for : - :
analyzing mammographic features would be useful as <J;\acto_r and most other risk factors is th(_a fact that breast tissue
supplement to the radiologist's assessment. Previous rélensity can be changed by dietary or hormonal
search efforts in computer-aided diagnd&#\D) for breast interventiong:1%1! Although there is no direct evidence that
cancer detection mainly concentrated on detection and chaghanges in mammographic breast densities will lead to
acterization of masses and microcalcifications on mammochanges in breast cancer risk, the strong correlation between
grams by using computer vision techniques. It has been denfreast density and breast cancer risk has prompted research-
onstrated that an effective CAD algorithm can improve theers to use mammographic density as an indicator for moni-
diagnostic accuracy of breast cancer characterization otoring the effects of intervention as well as for studying
mammograms, which, in turn, may reduce unnecessary biogreast cancer etiology** 3

sies. In this work, we are studying the feasibility of develop- Different methods have been used for the evaluation of
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mammographic breast density. Earlier studies used a subjetion by 5 radiologists using interactive thresholding in the
tive visual assessment of the breast parenchyma primarilgame data set.
based on the four patterns described by Woif¢1 is com-
prised entirely of fat; P1 has up to 25% nodular densities; P2| MATERIALS AND METHODS
has over 25% nodular mammographic densities; DY contains
extensive regions of homogeneous mammographic densf:- Database
ties). The subjectivity in classifying the mammographic pat- A data set consisting of 260 mammograms of 65 patients
terns introduced large variability in the risk estimation. Laterwas used for the development of the histogram analysis
studies used more quantitative estimates, such as planimetiyiethod in this study. Each case contains the craniocaudal
to measure the dense area in the breast manually outlined BZC) view and the mediolateral obligu#LO) view of both
radiologists on mammogram€. These studies indicate that breasts of the patient. The first 50 mammograms were con-
the percentagé%) of mammographic densities relative to secutive screening cases from the patient files in the Radiol-
the breast area can predict the breast cancer risk more acaagy Department at the University of Michigan. After data
rately than a qualitative assessment of mammographic pag&nalysis, it was found that there were very few dense breasts
terns. Warneet al*® conducted a meta-analysis of the stud-in the initial data set. An additional 15 cases visually judged
ies published between 1976 and 1990 to investigate thby radiologists to be dense breasts were then randomly se-
effect of different methods of classification on estimates oflected and mixed with the initial set. The images were pro-
cancer risk. They found that the mammographic parenchycessed individually without knowing their BI-RADS catego-
mal pattern does correlate with the breast cancer risk. Thé€s. The mammograms were acquired with mammography
magnitude of the risk varies according to the method used teystems approved by the Mammography Quality Standards
evaluate the mammograms. With the quantitative estimatedct (MQSA) and were digitized with a LUMISYS 85 laser
of mammographic density, the difference in risk between thdilm scanner with a pixel size of 50mXx50xm and 4096
highest and the lowest risk category is substantial and i§ray levels. The gray levels are linearly proportional to op-
greater than the risks associated with most other risk factordcal densities(O.D.) from 0.1 to greater than 3 O.D. units.
for breast cancer. More recent studies used fractal textur€h® nominal O.D. range of the scanner is 0-4 with large
and the shape of the gray level histogfarto quantify the pixel values in the digitized mammograms correspondln_g to
parenchymal pattern or used interactive thresholding on digil®W ©O-D. The full resolution mammograms were first
tized mammograms to segment the dense Yt was  Smoothed with a 13 16 box filter and s_ubsampled by a fz_ic-
reported that the thresholding method provided a higher risk°" ©f 16, resulting in 80gmx 800.m images of approxi-
value than the texture measure or the histogram stape Mately 225¢300 pixels in size for small films and 300
Other researchers have attempted to calculate a breast den37> Pixels for large films.
sity index to model the radiologists’ perceptibn.

In clinical practice, radiologists routinely estimate the B. Breast segmentation and image enhancement

breast density on mammograms by using the BI-RADS lexi-  rpq reast image is first segmented from the surrounding

con ~as ge_commended by the American College Ofi g6 packground by boundary detection. The detected
Radlo_logy‘ in order to provide a reference for mammo- \,, \nqary separated the breast from other background fea-
graphic sensitivity. Because of the lack of a quantitativeyres sych as the directly exposed area, patient identification
method for breast density estimation, researchers often U$Bformation, and lead markers. The density analysis was per-
the BI-RADS rating for monitoring responses to preventiveformed only within the breast region. An automated breast
or interventional treatment and the associated changes Ebundary tracking technique developed previotfdy was
breast cancer risk. We have found that there is a large mogified to improve its performance. Briefly, the technique
interobserver variability in the BI-RADS ratings among ex- ysed a gradient-based method to search for the breast bound-
perienced mammographef¥:* An automated and quantita- ary. The background of the image was estimated initially by
tive estimation, as investigated in this study, will provide Notsearching for the largest background peak from the gray
only an efficient means to measure mammographic densityeve| histogram of the image. After subtracting this back-
but also a reproducible estimate that will reduce the interground level from the breast region, a simple edge was found
and intraobserver variability of mammographic density meapy a line-by-line gradient analysis from the top to the bottom
surements. This image analysis tool will therefore allow re-of the image. The criterion used in detecting the edge points
searchers to study more definitively the relationship of mamwas the steepness of the gradient of four adjacent pixels
mographic density to breast cancer risk, detection, prognosigjong the horizontal direction. The steeper the gradient, the
and mammographic sensitivity, and to better monitor the regreater the likelihood that an edge existed at that correspond-
sponse of a patient to preventive or interventional treatmenihg image point. The simple edge served as a starting point
of breast cancers. for a more accurate tracking algorithm that followed. The
In this paper, we will describe the image processing techtracking of the breast boundary started from approximately
niques used in our automated breast density segmentatiahe middle of the breast image and moved upward and down-
algorithm. The performance of the computer segmentatiomnvard along the boundary. The direction to search for a new
was evaluated by a comparison with the average segmentaege point was guided by the previous edge points. The edge
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Fic. 1. (a9 A mammogram from our
image databaseb) the image super-
imposed with the detected breast
boundary and pectoral muscle bound-
ary; (c) the binary map of the seg-
mented breast region.

location was again determined by searching for the maxi- To facilitate histogram analysis, a dynamic range com-
mum gradient along the gray level profile normal to thepression method was developed to reduce the gray level
tracking direction. Since the boundary tracking was guidedange of the histograms. With our digitization, the gray lev-
by the simple edge and the previously detected edge points)s of the dense tissue are higher than those of the adipose
it could steer around the breast boundary and was less protiesue. Because of variations in exposure condition and
to diversion by noise and artifacts. The accuracy of thebreast thickness near the periphery, the gray level distribu-
boundary tracking technique was evaluated in our previousion corresponding to the breast parenchymal pattern is su-
study?® by quantifying the root-mean-square differences beperimposed on a low frequency background that mainly rep-
tween the detected and manually identified breast boundesents the global variations in exposure. This low frequency
aries. In the current study, the performance of the boundaripackground distorts the characteristic features of the histo-
tracking technique for this data set was determined by supegram due to the density pattern. To reduce the distortion, an
imposing the detected boundary on the breast image and vadaptive dynamic range compression technique was applied
sually judged if the detected boundary coincided with theto the breast image. For a given breast imag,y), which
perceived breast boundary. The breast image and its boundentains low frequency background and higher frequency
ary were displayed by appropriately adjusting the contrasbreast tissue structures, a smoothed imdgg(x,y), was
and brightness. Incomplete, jagged and mistracked boundbtained by applying a large-scale box filter kgx,y) to
aries were considered incorrect tracking. remove the high frequency components while retaining the
The unexposed film area around the film edges was ddew frequency components. The imageg(x,y) was then
tected automatically. After the breast boundary was found, @aompressed by a scale factor
region growing algorithm was used to fill the enclosed breast _
region. The result was a binary map that distinguished the FeO6y)=kFe(x,y). @
breast region from the background areas. An example of th&o reconstruct the high frequency componerfig(x,y),
tracked breast boundary and the breast binary map is showwsas subtracted from a constant gray le@land added to

in Figs. Xa)—-1(c). the original imageF(x,y):

For the MLO view mammograms, an additional step has —G-F 2
to be performed for segmentation of the pectoral muscle. The p(X.¥) c(X.y), @
initial edge in the pectoral region was found as the maximum Fg(X,y)=Fp(X,y) +F(X,y). 3

gradient point by a line-by-line gradient analysis from the

moved. Second, the remaining edge points that were oML i :
: o o . aximum gray level of the compressed imd&ggx,y). The
nected were identified by an 8-connectivity criterion. An Jray P )

e . .~ "values of these parameters were chosen experimentally as a
edge segment was removed if its direction was inconsiste

; o _ ) rBalance between reducing the dynamic range and preserving
with the pectoral edge direction relative to the breast imagey, image features in the compressed image

Finally, a second order curve was fitted to the remaining
edge points to separate the pectoral muscle from the brea&t
region. The pixels in the pectoral muscle region were ex-""
cluded from the histogram analysis and breast area calcula- A rule-based threshold technique was developed to seg-
tion. The accuracy of the pectoral muscle detection was alsment the dense areas from the breast background. The histo-
judged visually in this study, similar to the method used forgram of the breast region on the dynamic-range-compressed
the breast boundary described above. Figure 1 shows themammogram was generated and smoothed. The histograms
pectoral muscle trimming result for an MLO view mammo- of these images in the database were analyzed to formulate
gram. an automatic thresholding routine. The histograms were

Breast density segmentation and estimation
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Fic. 2. (a) A typical mammogram from our image databa@®;the low frequency imagEg(x,y) obtained by an 35 35 box filter;(c) the compressed image
Fc(x,y); (d) the inverted imag€&(x,y); (e) the enhanced imade:(x,y); (f) the gray level histogram within the breast region of the original infagey);
and (g) the gray level histogram of the breast region of the enhanced ifagey).

grouped into four classes based on the characteristic shapés Peak detection and feature description

of their histograms. It was observed that the grouping corre-

sponded approximately to the four BI-RADS breast density The gray level histogram within the breast area was gen-
ratings: Class | corresponded to breasts of almost entirely fagrated and normalized, and passed through an averaging win-
Class Il corresponded to scattered fibroglandular densitieslow to smooth out the random fluctuations. We estimated
Class Ill corresponded to heterogeneously dense and Claize window size to be in the range of 30 to 50 gray levels by
IV corresponded to extremely dense breasts. Examples @fxperimentally evaluating the histogram shapes and density
typical histograms for these four classes are shown in Fig. 33egmentation at different window sizes. Too small a window
The histograms seemed to follow two basic patterns. In onsize cannot smooth out the fluctuation and too large a win-
pattern, there was only one dominant peak, which repredow size will blur the useful features. A window size of 30
sented most of the breast structures in the breast region. lmas used in this study. The second derivative of every point
the other pattern, in addition to a large peak in the histogramgn the histogram curve was computed. An example of the
there was one or two smaller peaks on the right or left side ohistogram and its second derivative curve are shown in Fig.
the large peak. In a majority of the cases, the smaller pea#. The zero crossing locations were detected by scanning for
was distinguishable from the large one when the randonthe positive-to-negative and negative-to-positive changes on
fluctuation on the histogram was smoothed. the latter curve. If the second derivative was negative be-
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Fic. 3. Four typical classes of histograms and the setting of gray level infegyadj,] for the threshold calculation.
tween two zero crossing points, it indicated that a peak ex- P2
isted between these two points on the histogram. Normally, right-side energy: ER:K-E f(i)y*f(i), (6)
as shown in Fig. 4, a peak included the peak péigtand =Po
two valley pointsP, and P, located on the two sides of the likelihood: L=E/E’, (7)

peak point. The peak poiit, was determined by searching

for the maximum histogram value between the zero crossing’

pointsZ, andZ;, and theP; andP, points were obtained by
searching for the point with minimum histogram value be-
tween zero crossing poini, ,Z, andZ3,Z,, respectively.

The following peak features can be defined by peak poin
Py and valley points?, andP,:

P2
Energy: E=— > f(i)*f(i), 4
Aisp,
150
left-side energy: E,=— >, f(i)*f(i), 5
Aisp,
25
o 207 — Histogram Fa
g 15 1 2nd Derivative
=
s
3
Q2
£
=]
Z

0 500 1000 1500 2000 2500 3000 3500 4000
Gray level
Fic. 4. The gray level histograrntsolid curve and the second derivative

(dot) curve.Py is the peak pointP; andP, are the valley points of the peak
on the two sides of the peak poiRy. PointsZ,, Z,, Z; andZ, are zero

here f(-) is the histogramA is the total energy of the
entire histogram ané =3 f(i)*f(i),N is the maximum
gray level of the histogranE’ is the energy calculated by
approximating the histogram in the inter@,,P,] using
fwo straight linesP Py, andPyP,. The energyE of the peak
Is used to compare the sizes of the peaks on the histogram,
higher energy means bigger size of the pdgkandEg split

the energyE into two parts from the peak point for calculat-
ing the ratio of the energy in these two parts. The likelihood
L describes how close the real peak is to the triangle repre-
sented by the three poini,, P, andP,.

2. Rule-based histogram classification

A rule-based histogram classifier was developed to clas-
sify the gray level histogram of the breast area into four
classes. As shown in Fig. 3, a typical Class | breast is almost
entirely fat, it has a single narrow peak on the histogram.
Class Il has scattered fibroglandular densities, it has two
peaks, other than the tail part on the left, on the histogram,
with the smaller peak on the right of the bigger one. Class llI
is heterogeneously dense, it also has two peaks, but the
smaller peak is on the left of the bigger one. Class IV is
extremely dense, which has a single dominant peak on the
histogram, but it is wider compared with the peak in the
Class | histogram, and a second small peak sometimes oc-
curs to the left of the main peak.

The classification is performed in two steps. In the first

crossing points on the second derivative curve, which are used for searchirsf€P, the computer determines whether there is only one

the pointsP,, P, andP,.
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P\ and its location are detected by comparing the energy ofmore detailed description of the DA method can be found in
the peaks on the histogram. The single peak feature is mainlippendix A.

determined by the energy under the main peak and the  For the MEP method, the optimal threshold value is de-
featuresg, and Er. If the histogram is found to have a termined by maximizing the@ posteriorientropy subject to
single-peak pattern, in general, a narrow peak corresponds tertain inequality constraints that are derived by means of
very fatty breast{Class ), and a wider peak corresponds to special measures characterizing the uniformity and the shape
very dense breagClass I\). However, in some cases, the of the regions in the image. As is well-knohthe maxi-
histogram of these two classes is very similar, as discussetium a posteriori probability can serve as a criterion to se-
below (Fig. 9), and it is difficult to distinguish them by their lect a priori probability distributions when very little is
gray level histogram distributions. Two additional image fea-known about the probability distribution. Compared with the
tures were analyzed to classify very fatty and very dens®A method, MEP can provide a better thresholding result if
breasts. One feature is the gray level standard devig8tah  the gray level histogram does not have a bimodal distribu-

in the entire breast area, defined as tion. A more detailed description of the MEP method can be
1 12 found in Appendix B.

Sto=|— > > (f(xy)—f(xy)?| (8) The gray level histograms of the mammograms in our

N xEMap y<Map study are very complex, the histogram may be unimodal,

where MAP is the breast binary map regiojs the pixel ~bimodal or multi-modal. Itis difficult to select an appropriate
numbers within MAP. Another feature is the number ofthreshold by one general threshold selection method. There-

the breast area of a segmented binary image using the bi@elect a threshold according to the characteristic features of
mammogram, the breast mainly consists of a fatty backclasses. Supposg(g) is the gray level histogram of the
ground with some fibrous structures and fibroglandular tissubreast area. LeT=Method(f(g)|g:<g<g.) represent the
scattered in the breast area. The NSH value was found to BBreshold.T, that is selected by use of Method in the interval
larger (greater than 50 pixels on averagand Std smaller [91.92] of the histogrant(g), where Method can be either
(less than 500 on averageompared with a mammogram of the DA or MEP method. The settings of the interigl ,g,]

a very dense breast. for the four classes are discussed below and shown in Fig. 3.
than one peak, decision rules are used to decide if the secos§lected as

major peak is on the left side or on the rlght S|q_quj by T=MEP(f(g)|g;<9<0,),

the featuress, E| , Er andL, and the relative position of the _ _ . _ .

two peaks. If the second major peak is on the right, then th&here,g; is the main peak pointy, is the valley point on

histogram is classified to be Class II; otherwise, it is classithe right side of main peak.
fied to be Class llI. Class II: The histogram is not unimodal and the histogram

is classified as Class II; the threshold is selected by averaging
two thresholds that are computed in two different intervals of

the histogram by the DA method:

Gray level thresholding is essentially a pixel classification _
problem. Its objective is to classify the pixels of a given T1=DA(f(9)lg>0y).
image into two classes: one includes pixels with gray values T,=DA(f(g)|g>g,),
that are below or equal to a certain threshold; the other in-
cludes those with gray values above the threshold. Thresh- T=(T1+T5)/2,
olding is a popular tool for image segmentation, a variety Ofyhereg, is the valley on the left of the main peady; is the
techniques have been proposed over the years. In our studyain peak point.
two threshold selection methods are used: one is the Dis- Cjass III: The histogram is not unimodal; there are two
criminant Analysis DA) method* and the other is the Maxi- possibilities in the histogram distribution: there is a valley
mum Entropy Principle(MEP) based methot The DA petween the main peak and its left side peak, as shown in
method assumes that the image gray levels can be classifiggy 3, or no obvious valley exists between the main peak
into two classes by a threshold. To estimate the threshold, gn( its left side peak. In two different intervals of the histo-
discriminant criterion based on the within-class variance angyram, two thresholds are computed as
between-class variance is introduced. An optimal threshol
is selected by the discriminant criterion to maximize the T1=DA(f(9)[91<9<0y),
separability of the resultant classes in terms of gray levels. _ /
This method is well-suited for the cases where the gray level T2=DA(f(9)|9:<9<02),
histogram is bimodal. In an ideal situation, the histogram hasvhereg; is the left valley point of the left-side peale()
a deep and sharp valley between the two peaks representiof the main peakg; is the peak point oP, y, andgs is right
objects and background, respectively, and the optimum comalley point of the main peak. If there is an obvious valley,
responds to the gray level at the bottom of this valley. AT=(T,+T,)/2, otherwiseT=Tj.

3. Gray level thresholding

Medical Physics, Vol. 28, No. 6, June 2001



1062 Zhou et al.: Computerized image analysis 1062

Class IV: Since the histogram is considered unimodal, théreast density for that mammogram. The breast region was
threshold is computed by the MEP method]  segmented by the breast boundary tracking technique, and
=MEP(f(g)|g1<9<d,), where,g, is the left valley point the pectoral muscle was trimmed for the MLO-view mam-

of the main peakg, is the main peak point. mograms. The breast boundary was accurately tracked on
92.3% (240/260Q of the mammograms, and the pectoral
D. Radiologists’ segmentation of dense breast tissue muscle was correctly trimmed on 74.6%87/130 of the

MLO views. The histograms of 6%8 CC views and 8 MLO
In order to evaluate the accuracy of the computer segmen-. . : - )
. : views) of the breast regions did not exhibit the typical char-
tation method, the computer segmentation results were com-_ "~ . o

a}ctenstlc features of the four classes and were misclassified

pared to radiologists’ manual segmentation in the data set %y the computer, resulting in poor segmentation of the dense

65 patient cases. Details of the observer study for estimationegion

. .. . I
of the breast density and statistical analysis of the results Figure 6 shows a comparison of the percent breast density

were discussed elsewhéreBriefly, a graphical interface . . : . .

. ) isually estimated by radiologists against the true standard
was developed for displaying the mammograms and record- .
) , . : . Tor the 94% of the 260 mammograms that were classified
ing the observer’s evaluation. The CC-view and MLO-view

) . . correctly by the computer. Table | summarizes the compari-
mammograms for a given breast were displayed side-by- . T . .
n of the radiologists’ visual estimates with the true stan-

S : . . S
side; a radiologist ob_server exar_nmed th? mammograms anégrd. The “difference” between the estimated % breast den-
gave a BI-RADS rating and a visual estimation of the per-

cent breast density with 10% increments. After the subjectiv sity and the true standard was calculated for each case, and

. . : : ?he mean and the standard deviation of this difference over
evaluation, each view was displayed sequentially, together ; . . .
all cases were estimated for each radiologist and shown in

with the histogram of the dynamic-range-compressed imag"?he table. Therefore, the mean difference was the average

The_radlolog|st would mteracnvgly choose a _threshold byblas of the estimated % breast density from the true standard
moving a slider along the abscissas of the histogram plot: . :
. . ; . : . gver all images in the data set. It can be seen that almost all

The segmented binary image, displayed side-by-side with the " . . o . :
: radiologists had a positive bias, on average, when they visu-

mammogram, -would change instantaneously when th%” estimated mammographic density, except for Radiolo
threshold was changed. The radiologist could inspect if the y grap Y P

gist 5 who had a small negative average bias on the CC-view
segmented area corresponded to the dense area on the mafi- . . : : T
reading. For a given radiologist, the over-estimation in-

mogram. Once the radiologist was satisfied with the segmen- LS
. creased as the breast density increased. Although the corre-
tation of the dense area, the gray level threshold and thg : - . .
] . ation coefficients were high, ranging from 0.90 to 0.95, the
percent dense area derived from this threshold were re; . . . . .
. : deviations from the diagonal line were systematic. The aver-
corded. The display then moved to the next view of the same

breast for evaluation. The mammograms of the other bread9S bias from the true standard varied from less than 1% to
o gra 1%, depending on the radiologist. The root-mean-square

for the same patient would then be displayed and evaluate ! . X .

in the same way. The entire process was repeated for ea MS) errors of the five radiologists relative to the true stan-

0, 0,
patient until all patients in the data set were evaluated. ard ranged from 7.5% to 16.3%.

Five MQSA-approved radiologists participated in the ex- Figure 7 shows the comparison of the percent breast den-

periment. To familiarize the radiologists with the proceduresSlty between the computer segmentation and the true stan-

0 .
and to assist them in their visual estimation of the percenEjard for the 94% of mammograms whose histograms were

breast density, we had them trained on a separate set of fgn&dered to be correctly classified. There was a trend of

. . ) ver-estimation in the very fatty breasts. In the medium
patient cases prior to the evaluation of the actual data se . :

. o : . dense range, the variances from the true standard were high.
During the training session, the computer displayed the per:

) . . .~ Spme images had a large deviation from the diagonal line,
cent breast dense area to the radiologist, which was obtaineq’,. ~ . . .
. o . . . indicating that the threshold was incorrectly determined.
by the radiologist's interactive thresholding of the image.

The radiologist could then compare the manually se mente-(li-alble Il summarizes the comparison between the computer
9 P y sed erformance and the true standard. For the CC views with

Fheercﬁ:;zgf ¥Vr'1t|2 tfz(:(;b\giia::ﬁIsesjefs;?bg?;ﬁe?;edfgj;;[)};of(%orrect histogram classification, the correlation between the

o ) computer-estimated percent dense area and the true percent
gists’ visual estimates of the percent dense breast area. The .
. . . . breast density was 0.94, and between the computer and the
percent dense area obtained by interactive thresholding was ~. T ! .
not displayed during the actual study radiologists’ average visual estimate was 0(B@t plotted.
' These correlation coefficients were 0.91 and 0.82, respec-
tively, for the MLO views with correct classification. Al-

. RESULTS though the correlation coefficients of the computer segmen-
An example of a typical mammogram from each of thetation with the true standard were not better than those of the
four classes and its corresponding enhanced image, its histoisual estimates, the average biases of the computer segmen-
gram, the selected threshold and the segmented image agaion from the true standard were less than 2%, which were

shown in Figs. g)—5(d), respectively. substantially less than those of visual estimaf€able ).
The average percent breast density obtained from manudhis indicates that computerized segmentation is a good al-
segmentation by the five trained radiologists for each mamternative to manual segmentation although variances of the

mogram was used as the “true standard” of the percentutomated method will need to be further reduced. The RMS
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Fic. 5. Four classes of typical mammograms and corresponding enhanced and segmented image, histogram and threshold.

errors of the computer segmentation were also less thatween an individual radiologist's manual segmentation and
those of the radiologists’ visual estimates, at 6.1% and 7.2%he true standard varied from 2.9% to 5.9% among the five
respectively, for the CC view and MLO view, when the his- radiologists. For MLO views, the RMS difference varied
tograms were correctly classified. The biases and RMS erroifsom 2.8% to 6.2%. The average biases of the five radiolo-
for the different subsets of images are also shown in Table llgists ranged from-2.8% to 2.2% for the CC views and from
It can be seen that correct histogram classification was the 3.1% to 3.0% for the MLO views. The maximum biases of
most important factor in reducing the biases and the RMShe five radiologists varied from 4.4% to 22.6% for the CC
errors. The contributions by breast boundary detection andiews and from 5.2% to 23% for the MLO views.
pectoral muscle segmentation were minor, on average, for The five radiologists provided BI-RADS density ratings
improving the estimation of the percent dense breast area.for each breast. Although the BI-RADS ratings exhibited
Figure 8 shows the comparison of the individual radiolo-large inter-observer variatiofi8 it is interesting to compare
gists’ manual segmentation against the true standard. For Cfie computer’s histogram classification with the BI-RADS
views, the RMS difference in the percent breast density beratings. Since there were 260 images, each with 5 radiolo-

Medical Physics, Vol. 28, No. 6, June 2001



1064 Zhou et al.: Computerized image analysis 1064

MLO view and 57.1% of Class IV classifications have density rating 4.
1.0 . . . - More detailed analysis of the variability of radiologists’ BI-
v / RADS ratings was discussed by Margal?!
% varemmo,” ®
2 %87 oo e I IV. DISCUSSION
S / Radiologists routinely estimate mammographic breast
A
2 06 TP MR, v L density using the four BI-RADS categories. In studies that
g o -2 vv require breast density estimation, radiologists’ visual esti-
8 s alo Faoy B mates of mammographic density were often use_d as the den-
e 041 / L sity measure. Our observer study indicates that interobserver
g O™ v . e Radi variation between the BI-RADS ratings of five experienced
(] —— O Rad2 radiologists ranged from+1 to +1. The subjectively esti-
M 0.2 - v Rad3 - mated percent dense area can deviate from the true standard
32 . v facd by as much as 40%, as shown in Fig. 6. These results indi-
— — — Regression cate the need to develop an objective method for the estima-
0.0 . . . tion of mammographic breast density in order to improve the
0.0 0.2 0.4 0.6 0.8 1.0 accuracy and reproducibility of the estimation. A computer-

ized image analysis method for mammographic breast den-
sity estimation will be a useful tool for study of breast cancer
Fic. 6. A comparison of the percent breast density between five radiologistsrisk factors and for monitoring the change of breast cancer
visual estimates and the true standard. The dashed line represents the linggsk with preventive or interventional treatments.
regression of all data points on the plot. The MLO view is shown. The trend In this studv. we used the average of the percent breast
for the CC view is similar. ) Y . . 9 . p . A
area obtained with interactive thresholding by five experi-
enced radiologists as the true standard. The gray level thresh-
gists’ ratings, there were a total of 1300 rating comparisonsolding method used in this study could achieve a reasonable
The comparison of the computer and the radiologists'segmentation of the dense areas on the mammogram because
BI-RADS ratings is shown in Table IIl. It was found that the image was preprocessed with dynamic range compres-
87.4%of Class | classification have BI-RADS ratings 1 or 2,sion. The image-based analysis of breast density will not
92.0% of Class Il classifications have density ratings 2 or 3provide the actual percentage of fibroglandular tissue in the
83.4% of Class lll classifications have density ratings 3 or dreast volume. However, the previous studies that estab-

% Breast Density (True)

TaBLE |I. A comparison of the radiologists’ visual estimate of mammographic breast density with the true
standard. The “difference” was defined as the difference between the estimated % breast density and the true
standard for each case, and the mean and the standard deviation of this difference are tabulated.

No. of RMS Mean Std. dev. of
Image subsets  images Radiologist Correlation  error difference difference
CC view:
All 130 Rad. 1 0.942 13.3% 6.9% 11.5%
Rad. 2 0.931 14.5% 9.8% 10.7%
Rad. 3 0.923 13.3% 6.3% 11.8%
Rad. 4 0.934 7.5% 2.9% 7.0%
Rad. 5 0.901 9.6% —1.4% 9.6%
Histogram 122 Rad. 1 0.946 13.7% 7.2% 11.3%
correctly Rad. 2 0.936 14.7% 10.3% 10.8%
classified Rad. 3 0.929 14.2% 6.7% 11.6%
Rad. 4 0.929 7.7% 3.1% 7.1%
Rad. 5 0.900 9.7% -1.3% 9.4%
MLO view:
All 130 Rad. 1 0.933 14.5% 8.3% 12.0%
Rad. 2 0.914 16.1% 11.2% 11.5%
Rad. 3 0.915 14.4% 7.7% 12.2%
Rad. 4 0.919 8.8% 4.3% 7.7%
Rad. 5 0.910 9.2% 0.1% 9.2%
Histogram 122 Rad. 1 0.932 15.0% 8.3% 12.0%
correctly Rad. 2 0.914 16.3% 10.9% 11.4%
classified Rad. 3 0.919 14.7% 7.8% 12.2%
Rad. 4 0.916 9.0% 4.3% 7.7%
Rad. 5 0.909 9.4% 0.3% 9.2%
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cially when direct digital mammography becomes more
widely used in the future.

Our preliminary study indicates that breast density esti-
mation can be performed automatically and accurately.

7). Although the accuracy of our current algorithm still needs
to be improved, it can be seen that the computer segmenta-
tion can provide an estimate of the percent breast density
with a very small biagTable Il). More importantly, com-
puter segmentation will be more reproducible and consistent
than visual estimates. This will improve the sensitivity of
studies that depend on evaluation of the change in mammo-
graphic density over time or before and after a certain treat-
ment.

In this study, we reduced the spatial resolution to a pixel
size of 800umXx800um for image processing. The small
matrix size of the reduced images improves the computa-
tional efficiency. The reduction in resolution has two major
effects: reducing the image noise and blurring the detalils.
Since the significant dense tissue in the breast that contrib-
utes to the parenchyma is relatively large compared to 800
pm, it is not expected that processing at this pixel size will
have a strong effect on the accuracy of the estimated percent
breast density. Differences in the segmented area may occur
mainly along the boundary of the dense tissue region, but the
effect may be averaged out statistically along boundaries of
reasonable lengths. The residual errors in the estimation of
the dense area should not be substantial in comparison with
the inter- and intra-radiologists’ variations in their manual
segmentation.

Successful segmentation of dense tissue depends strongly
on whether a mammogram can be classified correctly into a
proper class. A successful classification will likely result in
the selection of a near optimal threshold. Conversely, if a
mammogram is classified into a wrong class, the threshold
will be selected incorrectly. For the mammograms of very

©) % Breast Density (True) fatty breasts, the gray level histogram has the characteristics
Fic. 7. A comparison of the percent breast density between the (:omputé?]c Class 1, which contains one large single peak. These his-
segmentation and the true standard. The dashed line represents the lind@grams can be distinguished relatively easily from most of
regression of the data on the pl@) CC view, (b) MLO view. the other classes of histograms if those histograms exhibit
the typical features. For mammograms of BI-RADS category
2 or 3, there are scattered fibroglandular or heterogeneous
densities in the breast. A small peak may be located on the
lished the correlation between breast density and breast caleft or on the right, or on both sides of the main peak on the
cer risk were all based on mammographic density. This inhistogram. The histogram could be classified into Class | if
dicated that mammographic density is a sufficiently sensitivéhe small peak is not large enough and is not detected as a
marker for breast cancer risk, although it may be less accusecond peak. Otherwise, it would be classified into Class I
rate than volumetric density. An actual measurement of ther Class Ill, depending on the location of that small peak
percentage of fibroglandular tissue volume in the breast, forelative to the main peak of the histogram. For the two-peak
example, by x-ray penetration with correction for scatter angpattern histogram, the DA threshold selection method is ro-
beam hardening, is difficult because it requires accuratbust if there is an obvious valley between the two peaks. If
x-ray sensitometry or phantom calibration for each imagethe valley is flat or not obvious, averaging the two thresholds
These requirements will limit its use to a few laboratoriesobtained by the DA method in two different intervals, as
that have specialized equipment and expert physicists. Magiesigned for this study, can reduce the chance of calculating
netic resonance breast imaging can also provide voluman incorrect threshold that differs greatly from the optimum,
measurement of dense tissue but it is expensive and not edsdt it also reduces the chance of finding the optimal thresh-
ily accessible. It can be expected that the estimation of manmsld. Overall, the rules designed for classification of the two-
mographic breast density by a computerized image analysiseak patterns seem to perform consistently well for this data
method will be a more practical and viable approach, espeset. One of the difficult situations is to distinguish between
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TasLE Il. A comparison of computer segmentation with the true standard. The “difference” was defined as the
difference between the estimated % breast density and the true standard for each case, and the mean and the
standard deviation of this difference are tabulated.

No. of RMS Mean Std. dev. of

Image subsets images  Correlation error  difference  difference
CC view:
All 130 0.746 12.3% 1.3% 12.3%
Boundary correctly tracked 120 0.780 11.4% 1.4% 11.4%
Histogram correctly classified 122 0.943 6.1% 0.2% 6.2%
Boundary and histogram correctly done 113 0.953 5.6% 0.8% 5.6%
MLO view:
All 130 0.780 11.6% 1.9% 11.5%
Boundary correctly tracked 120 0.766 11.9% 2.1% 11.7%
Histogram correctly classified 122 0.914 7.2% 1.5% 7.1%
Pectoral muscle correctly trimmed 97 0.733 11.6% 1.6% 11.6%
Boundary and histogram correctly done 112 0.912 7.2% 1.7% 7.1%
Boundary, histogram and pectoral 83 0.891 7.1% 1.9% 6.8%

muscle correctly done

Class | and Class IV, when the histogram of a very denséiveness of background correction with a box filtered image
breast mimics that of a very fatty breast, as shown in Fig. 9depends on the box size. We found that &3%-pixel filter

This image was correctly classified with the additional fea-is a good balance between computation time and the capa-
tures, Std and NSH. However, there were other cases thafjity to remove the high frequency components. The sub-
failed in spite of the additional criteria. The large difference action of the low-pass filtered image from the original im-
in the optimal threshold locations between these two (:I&\SS@ge is a form of unsharp masking. The breast boundary is
will lead to a large error in the estimated percent breast dergenerally enhanced as shown in Fige)2 The pixels at the

sity if the histogram is misclassified. Further study is neede Lnhanced breast boundary contribute a small peak to the left

to more accurately distinguish these two classes. tail of the gray level histogram of the breast area. Moreover
The dynamic range reduction technique reduces the vari; gray 9 ' '

ability of the gray level histograms and enhances their char'—f dense tissue is present close to th_e brez_ast bound_ary, it may

acteristics. This pre-processing facilitates the classification df°t P& segmented correctly due to intensity reduction. Other

the image into the correct class. There are many imagl?W frequency estimation techniques such as wavelet decom-

smoothing techniques published in the literature. Low-pasg0sition will be investigated in future studies.

filtering with a box filter is the simplest choice. The effec-  In this feasibility study, we used a small data set of mam-
mograms to develop a rule-based classifier for the histogram
analysis. Although a large fraction of the histograms mani-

MLO view fest characteristic features that can be grouped into four
1.0 : ' 1 1 classes, corresponding approximately to the four BI-RADS
® Rad.1 breast density ratings, there are many exceptions. One such
% © Sa:- 2 example is shown in Fig. 9. This causes misclassification and
2 0.8 1 ; R:d:i o " incorrect thresholding by the histogram classifier. It will be
[} H Rad. 5
=3 @
2> 061 ° g -
o— Q
7} eV
5 0(9@7 v TasLe Ill. A comparison of computer classification and radiologists’
0 o4 Oo L BI-RADS breast density ratings.
- ) [e) v
g Computer BI-RADS BI-RADS BI-RADS BI-RADS
] o v classification 1 2 3 4 Total
0 02 - v L
o v Class | 210 262 52 16 540
° (16.29%  (20.2% (4%) (1.29%  (41.5%
Class Il 0 92 184 24 300
0.0 T T T T (0%) (7.1% (14.2% (1.8% (23.1%
0.0 0.2 0.4 0.6 0.8 1.0 Class I 1 52 167 100 320
(0.1% (4%) (12.8%9 (7.7% (24.6%9
% Breast Density (True) Class IV 5 12 43 80 140
(0.4% (0.9% (3.3% (6.29%  (10.8%
Fic. 8. A comparison of the percent breast density obtained from the five Total 216 418 446 220 1300
radiologists’ manual segmentation with their average for the same mammo- (16.6%9 (32.2% (34.3%9 (16.9%9 (1009

grams. The MLO view is shown. The trend for the CC view is similar.
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Fic. 9. The gray level histograms of two mammograms classified by radiologists as BI-RADS rdtipger mammograjmand BI-RADS rating 4(lower
mammogram The shapes of the histograms are very similar and cannot be distinguished by our current histogram analysis method. These two examples were
correctly classified with the additional Std and NSH criteria.

necessary to investigate if other classification strategies catlemonstrated in this preliminary study that the estimation of
be more effective than a rule-based method. Furthermore, waammographic density can be performed efficiently and ac-
have not performed a systematic study to optimize the manygurately by the automated image analysis tool. The fully au-
parameters used in the segmentation algorithm. Further wortomated algorithm can provide an objective and reproducible
will be required to investigate the dependence of the segmermuantitative estimation of mammographic breast density that
tation accuracy on the various parameters. The parameté expected to be superior to subjective visual assessment and
selection and the performance of the computer classifier wilkomparable to manual segmentation by radiologists.

have to be improved by training with a larger data set and its

generalizability evaluated with unknown cases. The generalia\ck NOWLEDGMENTS

zation of the algorithm to images acquired with other digi-
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The computer-estimated mammographic breast density COxpPPENDIX A: GRAY-LEVEL
relate closely with the average manual segmentation by fivg HRESHOLDING—DISCRIMINANT ANALYSIS (DA)
experienced radiologists and the average bias is much le§geTHOD
than that of the radiologists’ visual estimation. We have . ) )
found that correct classification of the histogram shapes is . Suppose the probability Of, the gray lewglin an image
the most crucial step in our approach. The histograms o‘l"”th L gray levels can be estimated as
many mammograms have distinctive characteristics that can L
be recognized by a rule-based classifier. However, some his- pj=n;/N, sz n;. (A1)
tograms deviate from these rules and this can lead to mis- =1
classification. A further investigation will be needed to de- If the pixels in the image are classified into two clasSgs
sign more robust rules or classifiers to improve theand C; by the thresholdk, then the probabilities of class
classification accuracy. Despite these limitations, we haveccurrence and the class mean levels are given by
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wo=2, Pi=P(K), 0= > p=1-P(K), (A2)
i=1 i=k+1
k
M0:i=1 ipi/wo= (k) wg,
L (A3)
=S ip) ~ pr— (k)
M1 L Pi/wy 1-P(Kk) '
where
k k L
P()=2, pi, w(k)=2 ip; and pr=2, ipi, (A4)
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i=1
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probability of the pixels with gray level value less thianis
given by

k
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Previous studies have found that mammographic breast density is highly correlated with breast
cancer risk. Therefore, mammographic breast density may be considered as an important risk factor
in studies of breast cancer treatments. In this paper, we evaluated the accuracy of using mammo-
grams for estimating breast density by analyzing the correlation between the percent mammo-
graphic dense area and the percent glandular tissue volume as estimated from MR images. A dataset
of 67 cases having MR imagésoronal 3-D SPGR T1-weighted pre-contjashd corresponding
4-view mammograms was used in this study. Mammographic breast density was estimated by an
experienced radiologist and an automated image analysis tool, Mammography Density ESTimator
(MDEST) developed previously in our laboratory. For the estimation of the percent volume of
fibroglandular tissue in breast MR images, a semiautomatic method was developed to segment the
fibroglandular tissue from each slice. The tissue volume was calculated by integration over all slices
containing the breast. Interobserver variation was measured for 3 different readers. It was found that
the correlation between every two of the three readers for segmentation of MR volumetric fibro-
glandular tissue was 0.99. The correlations between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by an experienced
radiologist were both 0.91. The correlation between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by MDEST was 0.91
and 0.89, respectively. The root-mean-squanes) residual ranged from 5.4% to 6.3%. The mean

bias ranged from 3% to 6%. The high correlation indicates that changes in mammographic density
may be a useful indicator of changes in fibroglandular tissue volume in the brea2d0®Ameri-

can Association of Physicists in MedicingDOI: 10.1118/1.1668512

Key words: mammography, breast density, MR images, correlation

[. INTRODUCTION lated with parenchymal density patterns but they appeared to

) . N ~ be less sensitive measures of relative risk than the percent
Studies have shown that there is a strong positive correlatiogonse are%252 In current practice, breast density is esti-

between breast parenchymal density imaged on mammgyased mainly by radiologists’ visual judgment of the fibro-
grams and breast cancer risR The relative risk is estimated %Iandular tissue imaged on mammograms following the

to rb?] ib?:tltltcrjl ?[i for \\I,VOrmgor:) /Wr}otie rgramntwg;]rams hav reast Imaging—Reporting and Data SystéBi-RADS)
parenchymal densities ove o of Ihe breast area, as CoNyy;-,n3031 gecause of the qualitative and subjective nature
pared to women with less than 5% densities. Other cohort; . . . .
413 L of visual judgment, there are large intraobserver and interob-
studie$™**also found that breast cancer risk in the Categoryserver variations in the estimated breast density. The large
with the most extensive dense tissue was 1.8 to 6 times &S . .. . 9
garlablllty may reduce the observed correlation between

high as that in the category with the least extensive dens isk and b density. | | d h
tissue. Mammographic density as the risk indicator is greate[?reaSt cancer risk and breast density. It may also reduce the

than almost all other risk factors of breast carcdrAl- sensitivity of studies using mammographic density for moni-
though there is no direct evidence that changes in mammd©ring the effect of risk modifying treatments. We have de-
graphic breast densities will result in changes in breast cart€loped an automated image analysis system, Mammo-
cer risk, the strong correlation between breast density angifaphic Density ESTimatofMDEST), to assist radiologists
breast cancer risk has prompted researchers to use mamniB-estimating breast density on mammograms. A computer-
graphic density for monitoring the effects of intervention asized analysis is expected to increase the reproducibility and
well as for studying breast cancer etiology?’ consistency in the estimation of mammographic density,
A number of researchers have investigated imagéhereby improving the accuracy of the related studies. In our
analysis techniques to estimate breast densi§?® The previous study, we have found that the percent mammo-
common approaches are to analyze the textural pattern or tiggaphic density segmented by MDEST agreed closely with
percentage of mammographic densities relative to the breathat estimated by radiologists’ interactive thresholdihg.
area. It has been found that the texture measures were corre- The high correlation between breast cancer risk and breast
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density indicates that breast cancer risk may be closely reset of 67 patients to study the correlation between the 2-D
lated to the volume of glandular tissue in the breast. Amongrojected percentage of dense area on a mammogram and the
the modalities available for breast imaging at present, magpercentage of dense tissue volume estimated from the 3-D
netic resonancéMR) imaging is likely to be the most accu- MR images.

rate method for volumetric dense tissue estimation because The mammograms consisting of the craniocau@C)
fibroglandular tissue and adipose tissue can be well distinview and the mediolateral obliqueMLO) view of both
guished in MR images when a proper image acquisition techbreasts of the patient were digitized with a LUMISYS 85
nique is used® However, MR imaging is expensive, making laser film scanner at a pixel size of Hnx50um. The

it difficult to use MR imaging as a routine monitoring digitizer has a gray level resolution of 12 bits and a nominal
tool333* On the other hand, a mammogram is a two-optical density(O.D.) range of O to 4. For density segmen-
dimensional(2-D) projection image of a three-dimensional tation, it is not necessary to use very high-resolution images.
(3-D) object. The area of dense tissue measured on a marnie reduce processing time, the full resolution mammograms
mogram is not an accurate measure of the volume of fibrowere first smoothed with a 2616 box filter and subsampled
glandular tissue in the breast because no thickness informéy a factor of 16, resulting in 80@mx 800 um images for

tion is used. However, mammography is a widely availablethis study.

low cost procedure that may be used for monitoring breast

density change during preventive and interventional treat. Estimation of fibroglandular tissue volume on MR

ment or other studies. Women who participate in screeningmages

will also have mammograms readily available for retrospec-

tive review. Therefore, mammography will most likely be the ages for breast density estimation, we did not attempt to

method of choice for breast density estimation. . o
. ) . . develop an automated method for this application. Our algo-
In this study, we investigated the correlation between the. : _ )
T X . fithm for segmentation of volumetric fibroglandular tissue on
volumetric fibroglandular tissue in the breast and the pro- : : .
) . MR images used a semi-automatic method. The computer
jected breast dense area on mammograms by analyzing the

L . . . erformed an initial segmentation. A graphical user interface
percent volumetric fibroglandular tissue in MR breast image .
. . GUI) was developed to allow a user to review the segmen-
and the percent dense area in corresponding mammogran]s,. : - .
tion of every slice and make modifications if necessary.

Qur purpose in this study IS not to evaluate the usefulness_ he method consists of four steps. First, the breast boundary
either MR fibroglandular tissue volume or mammographic . .
: 2 . : was detected automatically on each slice. A deformable

density as an indicator for breast cancer risk, which have 2 .
odel and manual modification were used to correct for in-

been S.tUd'ed by othgr Investigators. R"?‘”‘?“ we used th? Mcorrectly detected boundaries that usually occurred in slices
_breast images to estimate the volumetric flbroglandula_r tISSUﬁear the chest wall where there were no well-defined breast
e e e I Houncares. Because ofomogenety of h breast coi e
density changé3-D). These comparisons will provide a bet- sitivity, the S|gnal_|nten5|t_y in the breast region was not uni-
ter understanding of their relationship, and may lead to im_fqrm across the field of view. A background correction tech-
proved methods for utilizing mammo'graphic density as Jnique that estimated the low frequency background from the
surrogate marker for breast cancer risk gray Ievgls along thg breast b_oundgry was develloped tq re-
' duce this systematic nonuniformity. Manual interactive
thresholding of the gray level histogram in the breast region
Il. MATERIALS AND METHOD was then used to separate the fibroglandular from the fatty
A. Dataset region. Morphological erosion was used to exclude the skin

| . tud dolini trast enh d M voxels along the breast boundary. Finally, the volume of fi-
N a préevious study, gadolinium contrast ennance Pbroglandular tissue was calculated by integration over all

dynamlc_ 'maging was employed to characterize mal_|gnan lices containing the breast. A flow chart of our algorithm is
and benign breast lesions. A dataset was collected with IR hown in Fig. 1

approval which included MR images and corresponding
mammograms acquired between detection and before biopsg
for a given patient. In the MR study, several series of images™
were acquired for each patient. Patients were scanned prone A two-step algorithm was developed for the detection of
using a commercial dual phased-array breast coil. The imadsreast boundary on each slice. First, we used a seeded pixel
ing protocol included a series was the coronal 3-D T1-thresholding algorithniSPTA) for the initial assessment of a
weighted pre-contrast seriésoronal sections 2—5 mm thick, breast boundary. Second, a 2-D active contour algorithm fur-
32 slices; 3-D Spoiled Gradient-Recalled Eqi®PGR; TE  ther refined the boundary. For slices close to the chest wall
=3.3ms; TR=10 ms, Flip=40°, matrix=256x128, FOV  where no clear boundary can be seen, manual modification
=28-32 cm right/left, 14-16 cm superior/inferior, scanwas used to outline an estimated boundary.

time=2 min 38 set This 3-D SPGR sequence produces full The SPTA determined the optimal threshold by iteratively
volume coverage of both breasts with contiguous image seg@artitioning the MR image into two parts and using the gra-
tions. The dense parenchyma and fat tissue are well sepdient value along the boundary of the partition as a guide in
rated with this heavily T1-weighted acquisition. We used aoptimizing the threshold. First, the center of gravity was se-

Since it is not our intention to routinely segment MR im-

Breast boundary detection
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\
Breast Boundary Detection
(with manual correction)

L
Background Correction
\

Gray Level Thresholding Fic. 2. An example of the first three processing blocks in FigalOriginal
1 MR slice; (b) automatically-detected breast boundary superimposed on the
image; andc) the background-corrected image.

(b)

Go to Next slice

Morphological Erosion
(for exclusion of skin)

Eexer™ WgracEgrao( C) +WpaEpalC), 3
Fibroglandular Tissue where curv, cont, grad, bal, hom denoted curvature, continu-
Volume Over All Slices ity, gradient, balloon force and homogeneity, respectively,
v and each energy term was associated with a weighiThe
Percent Fibroglandular detailed definition for each term can be found in the
Tissue Volume literature®> An example of a MR slice of a breast is shown in

Fig. 2(a), and the segmented boundary is shown in F{g).2
Fic. 1. The flow-chart for the segmentation of the fibroglandular tissue ONNote that the two breasts of a patient were scanned together
MR images. but each breast was analyzed separately.

D. Background correction
lected as the starting pixel on each slice. The gray level of ] ) ) ) o
the starting pixel was used as a threshold to create a binar?/1 To reduce the nonuniformity of the MR signal intensity in
partition of the image in which all pixels greater than the (e breast region, a background correction techr‘"?ﬁquang
threshold were set to one and all other pixels were set t§'€ Pixel values around the segmented breast region was em-
zero. Second, the gradient value of each pixel on the bound0yed. For a given pixeli(j) inside the breast region, the
ary of the binary partition was calculated by applying the9@ value of the background image was estimated as shown
Sobel filter to the original image. The gradient assessmerf Ed- (4):
for this particular binary partition was defined as the average o L R U D 1 1 1 1
gradient magnitude of these boundary pixels. The threshold B(i,j)= a + d_+ a. + d_} / ar + a + d—+ au
value was reduced to zero in a stepwise manner. The parti- ot e T b e T (4
tion for each threshold value was created and the gradient o
assessment for each partition was calculated as describdfiereL, R, U andD are the average gray values inside a
above. The partition with the maximum gradient assessmerit @St background estimation regi@BER) centered at the
was considered to be the initial segmentation result for thd®ft: ight, upper and lower pixels on the breast boundary,
breast, and the boundary of this partition was considered tifSPectively. A BBER was defined as the intersection of a
be the initial breast boundary. 21x 21-pixel _box and the breast region. The cent_er pixels for

After the initial segmentation, a deformable contour the left and right boxes were the intersection points between
method was used to further refine the boundary. The move€ Preast boundary and a horizontal line passing through the
ment of the boundary pixel was controlled by an energydiven Pixel (). Similarly, the upper and lower center pix-
function which consisted of internal energy and external en€!S for the upper and lower boxes were the intersection points
ergy. The internal energy components used in this study we etween the breast_bou_n_dary and a ve_rtlcal line passing
the continuity and curvature of the contour, as well as thdnrough the given pixeli(j). Only the pixels that were
homogeneity of the segmented partition. The external energlyithin the intersected area between the<ZIL-pixel box and
components were the negative of the smoothed image gra he breast region were included in the definition of the BB!ER
ent magnitude, and a balloon force that exerted pressure at2dd the calculation of the average gray value. The contribu-
normal direction to the contour. The energy function wastions of the average gray levels to the background pixg) (
defined as the following: were inversely weighted by their distances,d, ,d,,dq

from the given pixel {,j). An example of the background

corrected image is shown in Fig(c.

N
E= gl [Einte C) + Eexer( €)1, (1)

) E. Segmentation of fibroglandular tissue
whereE; s andEgyerare the internal energy and the external

energy, respectively, as defined in E8) and Eq.(3): Wg deyeloped a GUI that aIIoweq the user to perform a
combination of manual and automatic operations to segment
Einter=WeunEcurd €©) + WeonEcond ©) + WhomEhom: (2)  the breast boundary and the fibroglandular tissue on the MR
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mri image hackground corrected harder segmentation

Fic. 3. The graphic user interface for
the segmentation of the fibroglandular
tissues on the MR slice. The upper
row shows the original MR slicéeft),
the  background-corrected image
(middle) and the segmented binary im-
age (right). The segmented image re-
sponds to the reader’s adjustment of
- the gray level thresholdower row) in
Windowing real time so that the reader can choose
) the appropriate threshold by inspecting
the segmented image visually. The

Thrashold ' . . ] i i _ _ dark area in the segmented image in-
Thre:shold : E : : 5 5 j : dicates the fibroglandular tissue and
Percentage 3 § - : : ; : i ] the white area indicates the adipose

No. of pixels { s : : : : : : Essuz. Th(_a Thnerblmedalong g?e brgall)st

[ s | : : : : ‘ : : ; oundary is the boundary obtained by

Bmas_t : : : : : ; : : morphological erosion to exclude the
Density : : L : : : : 3 skin voxels for calculating the fibro-

glandular tissue volume.

images. The first windownot shown displayed the MR se- F. MR fibroglandular tissue volume
ries and the corresponding mammogram of each breast to
give the user an overview of the breast. The segmentation %f"

the fibroglandular tissue on each MR slice was processed i r tissue was obtained as a summation of these voxels over

the second wm_dow, shown in Fig. 3. The _or|g|nal MR Sllce'aII slices of the breast. The total volume of the breast was
the corresponding background corrected image and the S€8btained as the summation of the voxels enclosed by the

m_et;ted k;:??r:y ||mage wetre fstt;]own_ '3 thetﬁppr:a_rtpart of t?%reast boundary before morphological erosion. The ratio of
window. € lower part of the window, the histogram of \hese o volumes provided the percent volumetric fibro-
the voxel values in the breast region was shown. The use landular tissue in the breast

performed interactive thresholding on the histogram and th
segmented binary image corresponding to the chosen thresh- M hic densi .
old was displayed in real time in the upper part. If the breast ammographic density segmentation

boundary, which was automatically segmented by the com- We have previously developed an automated method for
puter initially, had to be corrected, the user could go to thesegmentation of the dense fibroglandular area on mammo-
third window and manually move the apices of the polygongrams. The method, referred to as the Mammographic Den-
outlining the boundary. The voxels contributed by the nipplesity ESTimator (MDEST) was described in detall
were excluded. On the slices containing breast skin that haelsewheré? In brief, the breast boundary on the digitized
voxel values similar to those of fibroglandular tissue, a mor-mammogram is tracked. A dynamic-range compression tech-
phological erosion operation was applied to the breashique reduces the gray level range of the breast area. By
boundary to exclude the skin voxels from the calculation ofanalyzing the shape of the gray level histogram, a rule-based
the fibroglandular tissue volume in the slice. The size of theclassifier classifies the breast density into one of four classes.
structuring element could be selected interactively on thdypically, a Class | breast is almost entirely fat; it has a
fourth window and the eroded boundary was displayed insingle narrow peak on the histogram. A Class Il breast con-
stantly for a chosen erosion operation. The user might agaitains scattered fibroglandular densities. Its histogram has two
change the structuring element if the erosion result of thenain peaks, with the smaller peak on the right of the bigger
previous choice was deemed unsatisfactory. Since the erodedie. A Class Il breast is heterogeneously dense. Its histo-
boundary only marked the region within which the fibroglan-gram also has two peaks, but the smaller peak is on the left
dular voxels would be summed and would not be used foof the bigger one. A Class IV breast is extremely dense. Its
the calculation of the breast volume, as described below, ihistogram has mainly a single dominant peak, but the peak is
did not need to be precise as long as it excluded the skiwider compared with the peak in the Class | histogram. A
voxels while not excluding the fibroglandular voxels. second smaller peak sometimes occurs on the left of the

After the fibroglandular tissue was segmented for each
ce, the total number of voxels containing the fibroglandu-
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5 o° 60 > ‘35 o 3 automated MDEST computer prograif@ CC view,
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(a) (b)

main peak. Based on the histogram shape, a threshold % volumetric fibroglandular tissue calculated with all avail-
automatically calculated to separate the dense and fatty pixable slices was then compared to that calculated with the
els. The mammographic density was estimated as the peselected starting slice.
centage of fibroglandular tissue area relative to the total We also performed observer experiments to evaluate the
breast area. For MLO view mammograms, the pectorainter-observer variations in the segmentation of fibroglandu-
muscle is detected and excluded from the density area dar tissue using the semi-automatic method. Two MQSA-
breast area calculations. In our previous work, the perforqualified radiologists performed the segmentation of the fib-
mance of MDEST was verified by comparison with manualroglandular tissue on the MR images of the 41 breasts using
segmentation by 5 breast imaging radiologists using a datast#te semi-automatic method implemented with the GUI. A
of 260 mammograms from 65 patients that were differentPh.D. researcher who was trained by these radiologists also
from the cases used in the current study. We found that thperformed the segmentation independently with the GUI.
correlation between the computer-estimated percent dense After verifying the consistency of segmentation by these
area and the average segmentation by the 5 radiologists wabservers, the trained Ph.D. completed the segmentation of
0.94 and 0.91, respectively, for CC and MLO views, with aall MR cases. The correlation between percent volumetric
mean bias of less than 2%. fibroglandular tissue on MR images and percent dense area
MDEST was applied to the mammograms of the 67 pa-on mammograms was then examined for the entire dataset.
tients used in this study. The percent dense area on mammo-
grams was estimated for the CC-view and the MLO-view
mammogram of each breast separately. In addition, an
MQSA-qualified radiologist also segmented the dense aredl. RESULTS
by mteractwe thresholding for each mammogram. T_he COMy Effect of selection of the starting slice
relation between the mammographic density obtained by
manual and automatic segmentation is shown in Figs. 4  Figure %a) shows the correlation of the % volumetric
and 4b) for the CC view and MLO view, respectively. The fibroglandular tissue calculated using all available slices for
correlation coefficients for the CC view and MLO view were the breast with that calculated using the selected starting
0.90 and 0.89, respectively. The mammographic densities eslice by radiologist A for the 41 breasts. The correlation co-
timated by automatic and manual segmentation were congfficient was 0.999. To compare the difference between their
pared with the percent volumetric fibroglandular tissue orresults, the mean difference and the root-mean-souarg
MR images as described below. residual, which is the residual from the linear least-squares-
fitted line, were also calculated. The mean difference was 0.7
and the rms residual was 0.6. The result is similar for radi-
ologist B (not shown, with a correlation coefficient of 0.999,
We performed an experiment to evaluate the variability ofa mean difference of 0.4 and a rms residual of 0.4. The
the estimated % volumetric fibroglandular tissue due to theorrelation between the % volumetric fibroglandular tissue
uncertainty in the determination of the starting slice of thecalculated using the selected starting slice by radiologist A
breast at the chest wall. The starting slice affected the estiwith that calculated using the selected starting slice by radi-
mation of the breast volume that was calculated by integratelogist B was also very high with a correlation coefficient of
ing from the starting slice to the anterior of the breast.0.988, a mean difference of 0.7 and a rms residual of 1.8, as
Twenty-three MR cases from the dataset were randomly seshown in Fig. %b). These comparisons indicated that the
lected for this observer experiment. There were a total of 4¥ariability in the selection of the starting slice of the breasts
breasts because some cases had only one breast. For ttid not have a strong influence on the % volumetric fibro-
subset of cases, each radiologist was asked to select the stagtandular tissue. We therefore used all available slices in the
ing slice from the MR images for each breast. The estimatetlR dataset for each breast in the following analyses.

H. Observer experiments
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B. Inter-observer variation between radiologists MLO-view mammograms. After verifying that the difference

Figure Ga) shows the comparison of the percent volumet-IN segmentation between the trained Ph.D. and the radiolo-
ric fibroglandular tissues on MR images segmented by tw@ists was similar to the interobserver variations between the
radiologists for the 41 breasts. The correlation between th&V0 experlencgd rad'°|09'5t.S’ the trained Ph.D. completed
segmentation results of the two radiologists is 0.99. Thdhe segmentation of the entire dataset.

mean difference was found to be 0.3 and the rms residual Figure 7 shows the comparison of the percent volumetric
was 1.6. fibroglandular tissue on MRI and the percent mammographic

density segmented by a radiologist. The percent areas on CC-
and MLO-view mammograms are higher than the percent
trained Ph.D. volume on MR images with a mean difference of 5.7% and

Figure &b) shows the comparison of the percent volumet-3-0%; respectively. . _
ric fibroglandular tissues segmented by the trained Ph.D, Figure 8 shows the comparison of the percent volumetric
against that segmented by radiologist A. A similar result wadiProglandular tissue on MRI and the percent mammographic
obtained by comparing the percent volumetric tissue segdensity segmented by MDEST. The percent areas on CC-
mented by the trained Ph.D. and that segmented by radiol@nd MLO-view mammograms segmented by the computer
gist A except that the data points were even closer to th@re higher than the percent volume on MR images with a
diagonal(not shown. The correlation between the result of mean difference of 5.3% and 2.6%, respectively.
the trained Ph.D. and the results of both radiologists was The correlation coefficients, the mean differences and the
0.99. The corresponding mean differences wer@.8 and rms residuals between the percent volumetric fibroglandular
—0.4, respectively, and the rms residuals were 1.4 and 1.3issue on MR images and percent dense area on mammo-
respectively. grams are compared in Table. |. The correlation between the
percent volume on MR images and percent area on mammo-
grams of the fibroglandular breast tissue is high, ranging
from 0.89 to 0.91. Although it is not expected that the values
of percent volume agree with the values of percent area, their

The percent volumetric fibroglandular tissue on MR im- mean differences range only from 3% to 6% and the rms
ages was compared with the percent dense area on CC- argbidual range from 5.4 to 6.3.

C. Inter-observer variation between radiologists and

D. Correlation between percent volumetric
fibroglandular tissue on MR images and percent
mammographic density

14
o
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40: '’z
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L

Fic. 6. A comparison of the segmentation of fibroglan-
dular tissue from MR images between two observers:
30 1 v ° (a) two experienced MQSA-qualified radiologists, cor-

1 relation coefficient0.99. (b) The trained Ph.D. and
20 1 /o Radiologist A, correlation coefficiert0.99. The corre-

1 lation between the trained Ph.D. and Radiologist B is
10 1 L also 0.99 but the data points were very close to the
diagonal and is not shown. The % volumetric fibroglan-
dular tissue was calculated using all available slices.
Dashed line: linear regression of the data; solid line:
diagonal.

N

%3
o
2

=
(=]
N

% Volume-MRI (Radiologist A)

o
Q
% Volume-MRI (Trained Ph.D.)

<

————— (iR A . B S —

0 10 20 30 40 50 0 10 20 30 40 50

% Volume-MRI (Radiologist B) % Volume-MRI (Radiologist A)
@ ()

Medical Physics, Vol. 31, No. 4, April 2004



939 Wei et al.: Correlation of density between mammography and MR images

939

= 60 — Z 60 P
3. ] ° 2 ° /
9 50 1 %0 ° 50 o/
S - &
- o o [ ° o °
] S
Q,
P4 40 o ?37’0@0 6 ° x 40 ocf o%/
‘;’ @&88‘: 2 & %gf@ ° Fic. 7. A comparison of the percent fibroglandular tis-
230 ] YA & 30 g§’/° o sue volume on MR images and the percent dense area
> o fo) & on mammograms segmented by an experienced radiolo-
8 2071 ° o 22 ° ist. (@) CC view, correlation coefficiert0.91; (b)
E = d o gist. ) 91
S 104 g 10 1 2% ° MLO view, correlation coefficient 0.91. Dashed line:
< | £ linear regression of the data; solid line: diagonal.
°\° 0 O\G o E
0

10 20 30 40 50 60
% Volume-MRI

0 10 20 30 40 50 60
% Volume-MRI
(a) (b)

IV. DISCUSSION glandular tissue in the breast, it is still not the ideal tool.
Fibrous tissue and glandular tissue are not well separated

Our purpose in this paper was to investigate the relation- h MR i , hni Si h f
ship between the percent dense area on mammogram and {@h current Imaging techniques. Since the amount o

percent fibroglandular tissue volume on MR image wedlandular tissue in the breast is the important factor relating

found a direct correlation between mammographic densit}o t_)re.ast cancer risk, further studigs are warranted for differ-
and MR volumetric densityFig. 7 and Fig. 8 The correla- _ent|at|ng the glandular and _the fibrous components of the
tion coefficients between the percent area on a mammograffi'@ged volume. The correlation between the percent glandu-
and the percent volume on MR images are high at 0.89 ant®' tissué volume and percent projected dense area on a
0.91. These results are more promising than those found ifl@mmogram will be a more reliable indicator of the useful-
previous studies that attempted to correlate percent den§¥SS of mammographic density analysis.
area on mammograms with MR information. Graheinal > The density on mammograms is a 2-D projected area of
investigated the relationship between percent der{gitg- the fibroglandular tissues. The percent dense area is not ex-
jected dense argan mammogram and two objective MR pected to be equal in value to the percent volume. The mean
parameters of breast tissue, relative water content and meé&#fferences between the percent volume and the percent area
T2 relaxation. Their results with 45 cases showed a positivén CC- and MLO-views, as determined by the radiologist’s
correlation between percent density and relative water corinteractive segmentation, are 5.7 and 3.0, respectiielple
tent (Pearson correlation coefficienf.79) and a negative 1), with the percent dense area values being higher. We also
correlation between percent density and mean T2 valu#vestigated the rms residual between the percent volume
(Pearson correlation coefficient-0.61). Another study by and the percent area when the relationship between them was
Leeet al** analyzed fatty and fibroglandular tissue in differ- assumed to be linear. The rms residual between the percent
ent age groups to compare x-ray mammography with T1volume and the percent area on CC- and MLO-views are 6.3
weighted MR images. Their study with 40 cases indicatecdand 5.6, respectivelyTable ), relative to the straight line
that the correlation between the two techniques is 0.63 wheabtained from linear least squares fits to the data. One pos-
the fat content was more than 45%. However, the correlatiosible factor that may contribute to a higher value of percent
coefficient decreased to 0.34 when their analysis includedense area on mammograms than the percent volume value
only dense breasts. on MR images is that the tissue volume imaged by the two
It may be noted that although MR imaging is currently themodalities is somewhat different. The MR images include
most accurate method for estimating the volumetric fibro-more tissue near the chest wall, which is mainly retroglan-

- 60 — ry - 60
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TaBLE |. Statistic analysis of the relationship between percent fibroglandulaTasLe 1l. An analysis of the relationship between percent fibroglandular
tissue volume on breast MR images and percent dense area on mammiissue volume X) on breast MR images and percent dense ahadn
grams segmented by radiologist and MDEST. mammograms segmented by radiologist using three mathematical models.
m, k, k; andk, are constants determined by least squares curve fitting.

Radiologist Computer (MDEST)
Mathematical model Y =kx?® Y=kx™ Y=k, x"+ky
CCvs MLO vs CCvs MLO vs
MRI MRI MRI MRI CC Least squares FitY=0.8%?% Y=1.0x"8 Y=1.0%"%-0.19
'S rms residual 6.5 6.0 5.6
Correl. coeff. 0.91 0.91 0.91 0.89 MRI  Coefficient of 0.82 0.85 0.87
rms res!dual 6.3 5.6 5.8 5.4 determination
Mean diff. 5.7 3.0 5.3 26 MLO Least squares FitY=0.73%%® Y=0.96% Y=0.90¢*5°—0.09
Vs rms residual 6.0 5.5 5.3
MRI  Coefficient of 0.80 0.84 0.85

determination

dular adipose tissue, than a mammogram does, thus reducing
the percentage of fibroglandular tissue volume. The reduc-
tion in the percent volume values, however, is relatively
small, as found in our study evaluating the effects of selectsituation that the percent projected area was negative when
ing starting slices for volume calculatigfig. 5). The main  the percent volume was zero would not occur physically.
difference may therefore be attributed to the geometric relaNote that if the model was fitted to the percent area data
tionship between the volume and the projected 2-D areasegmented by MDESTFig. 8), thek, values would become
explained later. positive, indicating that the nonzero, values are likely
Geometrically, we do not expect the relationship betweercaused by segmentation biases.
volume and its projected 2-D area to be linear. In a hypo- Overall, these models demonstrate that there is no simple
thetical situation such that the dense tissue volume is aathematical relationship between the percent volume and
sphere (volume4/3 7r®) enclosed inside a concentric the percent projected area but the values for the exponents
spherical shell of fatty tissue volume, the percent projecte@dppeared to be in a reasonable range. The relationship be-
2-D area (area mr?) of the inner sphere relative to the tween the percent volumes of two 3-D objects, one within
outer sphere is equal to the percent volume to the power adnother, and their percent projected 2-D area depends on
2/3. The relationship between the percent area and the petheir shapes. For example, the closer the two volumes are to
cent volume is therefore not linear, and the percent area isoncentric cylinders of the same height, the closer the expo-
larger in value than the percent volume for any ratio of radiinent is to unity. The spread of the data points can therefore
between the two spheres. In general, the compressed bredw attributed to the various irregular shapes of the fibroglan-
and the dense tissue are not spherical. To investigate ttdular tissue in the breasts, the changes in the shapes of the
empirical relationship between the percent area and the pefatty and fibroglandular tissue due to compression, as well as
cent volume in the nonlinear situation, we applied leasthe uncertainties in the segmentation of both the mammo-
squares fits in several polynomial models to the data pointgrams and the MR images. Although the spread of the data
in Fig. 7. The results are shown in Table Il and Fig. 9. Apoints in the correlation plots is large, one can expect that
comparison of Table | and Table Il indicates that tiie when the mammographic density of a given patient is moni-
=kx?”® model (x=percent fibroglandular tissue volum¥, tored over time, the variations in the projected dense area
=percent mammographic dense areasulted in slightly due to the geometric factors, described above, will actually
larger rms residuals than the linear model. The model be much less than that observed from the scatter plots among
=kx™ with m equal to 0.83 and 0.86, respectively, for CC- a large number of patients. In other words, the uncertainty in
and MLO-views slightly reduced the rms residuals. The besthe estimated percent density from the serial mammograms
fit was obtained from the mod¥l=k;x™+k,. However, the of a given patient should be much less than those shown in

60—t 60 ——————————
4 s b ° /
50 50 1 P
; 1 .5 °0°° /0/
£ 40 = 40 ol I . » o
(o} ° 2SI H Fic. 9. Nonlinear fitting of the relationship between the
Q | o %0°% o
Q 30 =30 °, L percent volume and the percent area segmented by a
§ s 63 :"o ° F radiologist with the least squares methé¢a). CC view,
< 20 - Z2 & e - (b) MLO view. Dashed liney =kx??; dashed—dotted—
. = 1 JfL - r dotted line:y=kx™; solid line: y=k;x™+k,. The fit-
10 - 101 /82 I ted parameters of the modelsy, k, k; and k,, are
1 1 shown in Table II.
oYl o®
0 10 20 30 40 50 60 0 10 20 30 40 50 60
% Volume-MRI % Volume-MRI
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Fig. 7. The strong correlation observed between the percemf MR images was found to be small with correlation coef-
dense area on mammograms and the percent volumetric fificients of 0.99. The correlation between the percent volume
roglandular tissue on MR images therefore indicates that an MR images and percent area segmented by a radiologist
change in mammographic density can be a useful indicatdior either CC- view or MLO-view is 0.91. The correlation
of a change in percent fibroglandular tissue volume in théetween percent volume and percent area estimated by MD-
breast. EST is 0.91 and 0.89, respectively, for CC and MLO views.
Recently, some researchers attempted to estimate thdammographic density is thus highly correlated with the
thickness of the fibroglandular tissue in local regions of thepercent volumetric fibroglandular tissue in the breast. The
mammograms from the projected densitihis approach is high correlation indicates that changes in mammographic
expected to provide a more accurate estimation of the fibrodensity may be a useful indicator of changes in fibroglandu-
glandular tissue volume if the true thicknesses of the fibrodar tissue volume in the breast. Our computerized image
glandular tissue and fatty tissue can be determined at variowmalysis tool, MDEST, can provide a consistent and repro-
locations of the projected breast region. The volume of thalucible estimation of percent dense area on routine clinical
fibroglandular tissue can then be summed over the pixels imammograms. The automated image analysis tool may im-
the breast region and the percent volume calculated. Howprove the sensitivity of quantifying mammographic density
ever, to obtain accurate measurements, this approach requirglsanges, thereby contributing to the understanding of the re-
the knowledge of the sensitometric curve for the screen-filmationship of mammographic density to breast cancer risk,
mammogram at the imaging facilityor use of a digital de- detection, and prognosis, and the prevention and treatment of
tector with linear respongeand other physical parameters breast cancer.
such as the scatter fraction, the beam quality and beam hard-
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To retrospectively compare computer-aided mammo-
graphic density estimation (MDEST) with radiologist esti-
mates of percentage density and Breast Imaging Reporting
and Data System (BI-RADS) density classification.

Institutional Review Board approval was obtained for this
HIPAA-compliant study; patient informed consent require-
ments were waived. A fully automated MDEST computer
program was used to measure breast density on digitized
mammograms in 65 women (mean age, 53 years; range,
24-89 years). Pixel gray levels in detected breast borders
were analyzed, and dense areas were segmented. Percentage
density was calculated by dividing the number of dense pixels
by the total number of pixels within the borders. Seven
breast radiologists (five trained with MDEST, two not
trained) prospectively assigned qualitative BI-RADS density
categories and visually estimated percentage density on 260
mammograms. Qualitative BI-RADS assessments were com-
pared with new quantitative BI-RADS standards. The refer-
ence standard density for this study was established by allow-
ing the five trained radiologists to manipulate the MDEST
gray-level thresholds, which segmented mammograms into
dense and nondense areas. Statistical tests performed in-
clude Pearson correlation coefficients, Bland-Altman agree-
ment method, k statistics, and unpaired t tests.

There was a close correlation between the reference stan-
dard and radiologist-estimated density (R = 0.90-0.95)
and MDEST density (R = 0.89). Untrained radiologists
overestimated percentage density by an average of 37%,
versus 6% for trained radiologists (P < .001). MDEST
showed better agreement with the reference standard (av-
erage overestimate, 1%; range, —15% to +18%). MDEST
correlated better with percentage density than with quali-
tative BI-RADS categories. There were large overlaps and
ranges of percentage density in qualitative BI-RADS cate-
gories 2-4. Qualitative BI-RADS categories correlated
poorly with new quantitative BI-RADS categories, and 16
(6%) of 260 views were erroneously classified by MDEST.

MDEST compared favorably with radiologist estimates of
percentage density and is more reproducible than radiolo-
gist estimates when qualitative BI-RADS density categories
are used. Qualitative and quantitative BI-RADS density
assessments differed markedly.

© RSNA, 2006
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revious breast density assess-
ments performed by using the
Breast Imaging Reporting and
Data System (BI-RADS) have been com-
pletely qualitative. The new (fourth edi-
tion) BI-RADS involves combined quali-
tative and quantitative assessments (1).
The quantitative assessments are di-
vided into quartiles, with category 1 in-
dicating breast tissue that is less than
25% glandular; category 2, breast tissue
that is approximately 25%-50% glandu-
lar; category 3, breast tissue that is ap-
proximately 51%-75% glandular; and
category 4, breast tissue that is more
than 75% glandular (1). The qualitative
descriptive terms remain the same (1).
The correlation between the new quan-
titative assessments and the conven-
tional qualitative density assessments
has not been well studied. The main
purpose of using the BI-RADS density
categories is to indicate the relative sen-
sitivity of the mammographic examina-
tion in the detection of breast carci-
noma, which may be lower in cases of
dense breasts (1). Quantitative assess-
ment of breast density may enable a
more precise determination of differ-
ences in breast density.
Mammographic density is important
for two main reasons: First, the sensi-
tivity of mammography in the detection
of breast carcinoma is lower in dense
breasts because dense fibroglandular
tissue may obscure calcifications and
masses (1-3). Second, there is a direct
association between increased mammo-
graphic density and increased risk of
developing breast cancer (4-10). In ad-
dition, investigators who use quantita-
tive assessment of mammographic den-
sity report higher odds ratios for the
development of breast carcinoma in
women with dense breasts compared
with the odds ratios reported by investi-
gators who use subjective assessment of
density (7,8,11). Boyd et al (6) con-
firmed the importance of using precise
methods to determine mammographic
density: They observed a 2% increase in
the relative risk of breast cancer for
every 1% increase in mammographic
density percentage.
There is also evidence that hor-
monal therapies, including estrogen and

tamoxifen treatments, can change mam-
mographic density (9,12-14) and alter
the risk of breast carcinoma (15-18).
Whether this relationship is causal re-
mains to be proved. A simple and accu-
rate method of measuring breast density
would be a useful tool for investigating
breast cancer risk-mammographic den-
sity relationships.

Several methods to objectively
quantitate mammographic density ex-
ist. The original method, described by
Wolfe et al (11) in 1987, involved the
use of manual planimetry to compute
the density percentage: The dense
white areas on mammograms were
manually traced. However, as the au-
thors themselves noted, this method
was “tedious and time-consuming.” More
recent techniques have been facilitated by
the advent of digital methods of acquiring
and viewing mammographic data. Al-
though these methods involve the use of
computers, some of them are only par-
tially automated (19,20). One such
method was based on an ordinal rank-
ing system rather than on a density per-
centage system (20). More recent com-
puterized programs have been fully au-
tomated (10,21,22).

We developed a method in which a
fully automated mammographic density
estimation (MDEST) program is used to
rapidly determine the perimeter of the
breast and quantitate the mammographic
density percentage (23). Thus, the pur-
pose of our study was to retrospectively
compare mammographic densities deter-
mined by using this MDEST program
with both radiologists’ estimates of den-
sity percentage and BI-RADS breast den-
sity categories.

Materials and Methods

Mammogram Selection and Digitization

The authors had control of the data and
the information submitted for publica-
tion. The data set comprised the four-
view craniocaudal (CC) and medio-
lateral oblique (MLO) mammograms
obtained in 65 patients who were ran-
domly selected from a National Cancer
Institute- designated comprehensive can-
cer center (University of Michigan Health

Center) after institutional review board
approval was obtained. This is the same
mammogram data set used in a prior
study (23). The requirement for individ-
ual patient informed consent was waived.
Our study was HIPAA compliant. We
originally selected 50 consecutive normal
four-view screening mammograms for
analysis. Four 4 months later, to include
more qualitative BI-RADS density cate-
gory 3 and 4 mammograms—since these
were underrepresented in the original
sample—we selected an additional 15
consecutive normal four-view mammo-
grams that had been qualitatively deter-
mined to be dense. The ages of the 65
women ranged from 24 to 89 years
(mean, 53 years).

The mammograms had been ac-
quired by using Mammography Quality
Standards Act (MQSA)-approved GE
DMR mammography units (GE Medical
Systems, Milwaukee, Wis) with Kodak
MR2000 (Kodak, Rochester, NY) screen
and film systems. All images were digi-
tized by using a LUMISYS 85 laser film
scanner (Lumisys, Mountain View, Calif)
with a pixel size of 0.05 X 0.05 mm and
4096 gray levels. The gray levels were
linearly proportional to the optical densi-
ties, from 0.1 to approximately 4.0 optical
density units. The nominal optical density
range of the scanner is 0-4, with large
pixel values corresponding to low optical

Published online before print
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density. Since the breast density pattern
does not have to be analyzed in high spa-
tial resolution (ie, pixel size of 0.05 mm or
less), the full-spatial-resolution mammo-
grams were first smoothed with a 16 X 16
box filter and subsampled by a factor of
16 to result in 0.8-mm pixel size images
that were approximately 256 X 256 pixels
in size for the analysis. This process re-
duced the processing time and image
noise. The technical details are described
elsewhere (23). However, a different
software version of the density program
was used for this study.

Mammogram Density Analysis with
MDEST

The computer first tracked the breast
boundary by using a gradient-based
edge-tracking algorithm, which has
been described previously (23). The
tracking of the boundaries of a given
breast started from approximately the
middle of the breast image and contin-
ued both upward and downward along
the boundary. The direction in which to
search for a new edge point was guided
by the previous edge points. The edge
location was determined by using a gra-
dient criterion along a band of pixels
perpendicular to the tracking direction.
The detected boundary separated the
breast from other background features,
including the directly exposed area, pa-
tient identification information, and
lead markers, which were excluded in
the subsequent analyses. Figure 1 shows
examples of the breast boundaries deter-
mined on typical CC- and MLO-view
mammograms. A separate edge-tracking
algorithm was used to detect the edge of
the pectoral muscle on the MLO-view
mammograms (Fig 1). The detected edge
usually is not very smooth owing to noise
on the image. A second-order polynomial
was fitted to the detected edge points to
segment the pectoral region. The pectoral
muscle on the MLO views was excluded
from the subsequent gray-level histogram
analyses and breast area calculations.

A dynamic range-compression meth-
od was used to reduce the gray-level
range of the histograms without affect-
ing the relative areas of the dense tissue
region and the entire breast region.
The histogram of the breast region on

the dynamic-range- compressed mammo-
gram was generated, normalized, and
smoothed. The histograms were analyzed
by the computer to formulate an auto-
matic thresholding routine.

After histogram classification, a
gray-level threshold was automatically
calculated to separate the fat and dense
glandular tissue regions. The gray-level
threshold depends on the shape (or
class) of the histogram. If the histogram
has a single peak, the maximum entropy
principle-based method (24) is used to
calculate the threshold. If the histogram
has more than one peak, the discrimi-
nant analysis method (25) is used. The
threshold is used to separate the pixels
in the breast region into two classes:
The class of pixel values above the
threshold corresponds to dense tissue,
and the class of pixel values below the
threshold corresponds to fat tissue.
This classification is represented on a
binary image (ie, segmented image), on
which dense pixels are represented by

Figure 1

a.
Figure 1:

Mammogram from our image database superimposed with the detected breast boundary. (a) CC
view. (b) MLO view with anterior breast boundary and pectoral muscle boundary.

white and fat pixels are represented by
black (Fig 2). The percent breast den-
sity is then calculated as the number of
pixels in the dense area divided by the
total number of pixels in the entire
breast region.

Mammogram Density Analysis Performed
by Readers

Seven  MQSA-certified  radiologists
(K.E.M., M.A.H., M.A.R., J.E.B., C.P.,
C.E.B., K.AK.) independently evalu-
ated the data set. Five of these radiolo-
gists (K.E.M., M.A.H., M.A.R., J.LE.B.,
C.P.) were involved in a prior study
(23). Before evaluation of the actual
data set, a set of 25 training cases was
used to familiarize five of the radiolo-
gists with the MDEST program and as-
sist them in the visual estimation of the
percentage of dense area on the mam-
mograms. Thus, five radiologists were
considered to be trained, and two were
not. The experience of the radiologists
in interpreting mammograms ranged
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from 1 to 25 years (median, 9 years;
mean, 10.4 years). The seven radiolo-
gists received their residency education
at six different institutions. Two were
educated at the same institution.

A graphical interface for displaying
and recording the radiologists’ evalua-
tions was developed. For a given breast,
the CC- and MLO-view mammograms

were first displayed side-by-side on a
high-spatial-resolution 22-inch Compaq
AlphaStation monitor (Compaq, Palo
Alto, Calif). This monitor has a display
matrix size of 1280 X 1024 pixels. It is
not Digital Imaging and Communica-
tions in Medicine calibrated, but it al-
lows one to adjust contrast and bright-
ness settings, and we adjusted these

MDEST Density Density | Qualitative | Quantitative
Mammogram Segmented Reference | MDEST BIRADS BIRADS
Mammogram Standard (range)
2.8% 10.1% 1.2(1-2) 1
17.2% 19.0% 2.8 (2-3) 1
33.0% 35.0% 3(3-3) 2
52.5% 59.1% 3.6(3-4) 3
Figure 2:  Four representative CC mammograms with corresponding segmented images, density esti-
mates, and BI-RADS categories determined by trained radiologists. Note the difference between the quantita-
tive and qualitative BI-RADS categories. Although the two middle (second and third images from top) mam-
mograms have similar amounts of segmented breast density, the density percentage is greater in the smaller
breast owing to less fat tissue.

at the beginning of the study according
to the subjective impressions of an ex-
perienced MQSA-certified radiologist
(M.A.H.). For each mammogram, the
radiologists were able to adjust the
window and level settings on the dis-
play screen.

Qualitative BI-RADS density classi-

fications.—The radiologist first assigned

each two-view mammogram to one of
the four conventional BI-RADS qualita-
tive density categories (eg, category 1,
indicating fat tissue). This BI-RADS
density assessment system does not in-
clude any quantitative classification used
in the new (fourth edition) American Col-
lege of Radiology BI-RADS (1), which was
not published at the time of the study.
Herein, the scores used in the new BI-
RADS classification system are referred
to as “qualitative BI-RADS categories.”

Quantitative estimate of density
percentage.—Next, the radiologist visu-
ally estimated the density percentage on
each mammogram by selecting one of
the 10% density ranges displayed on the
screen. Ten density percentage incre-
ments (eg, 1%-10%, 10%-20%) were
used because we believed that it would
be too difficult for the radiologists to
visually estimate density to the near-
est 1%.

Determination of reference-stan-
dard density.—After the subjective ra-
diologist evaluation, each view (CC or
MLO) was displayed sequentially. The
displayed material included the original
mammogram, the enhanced mammo-
gram, the histogram of the breast re-
gion in that view, and the corresponding
binary image created by thresholding
the histogram. The enhanced image was
generated by the MDEST program dur-
ing the density segmentation. This im-
age was basically a version of the origi-
nal mammogram with the contrast of
structures enhanced. The radiologist
was then able to manipulate the gray-
level threshold by interactively moving a
slider along the horizontal axis of the
histogram. The binary image changed
simultaneously with the chosen thresh-
old so that the radiologist could deter-
mine whether the segmented white area
corresponded to the dense white area
on the mammogram. The radiologist
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was instructed to change the amount of
segmented dense area to resemble the
area that he or she would trace by hand
if he or she were performing manual
planimetry (11). When the radiologist
determined that the segmented area
was accurate, he or she clicked a button
to record the gray-level threshold and
density percentage for each image.
Since no reference standard exists for
breast density measurements, we used
this value—averaged for five radiolo-
gists previously trained with the training
cases—as the reference-standard den-
sity percentage for each view.

The radiologist was blinded to his or
her own estimated density percentage
value obtained and thus could not at-
tempt to match his or her density per-
centage estimate for the different views
or for different breasts of the same pa-
tient. The mammogram of the con-
tralateral breast of the same patient was
then displayed and evaluated in the
same way. The entire process was re-
peated for each patient until the imaging
data of all patients in the data set were
evaluated. We also recorded how long it
took the radiologists to complete their
evaluations of the mammograms.

During the training session for the
five radiologists, both the percentage of
dense area derived by the MDEST pro-
gram and that determined by using inter-
active thresholding were presented to the
radiologists so that they could compare
these two percentages with their visually
estimated density percentage for each im-
age. The percent dense areas derived by
using MDEST and interactive threshold-
ing were not displayed during the actual
study. To assess the effect of training, two
additional breast imaging radiologists,
who had not undergone training to visu-
ally estimate density percentage with the
23 training cases, evaluated the same set
of study images.

Statistical Analyses

Pearson correlation coefficients were
calculated to examine the associations
of the qualitative BI-RADS-, MDEST-,
and trained radiologist-estimated mam-
mographic densities with the true (ie, ref-
erence-standard) mammographic den-
sity. To assess the agreement between

Table 1

Descriptive Statistics for Breast Density on CC Views, Estimated by Seven

Radiologists
Datum* Mean Valug" Minimal Value Maximal Value
Reader 1
BI-RADS category 2.38 = 0.85 1 4
MDEST density (%) 0.25 + 0.15 0.07 0.76
Radiologist density estimate (%) 0.30 = 0.25 0.05 0.85
Reference-standard density (%) 0.22 = 0.16 0.02 0.59
Reader 2
BI-RADS category 2.44 = 0.90 1 4
MDEST density (%) 0.25 = 0.15 0.07 0.76
Radiologist density estimate (%) 0.23 = 0.21 0.05 0.85
Reference-standard density (%) 0.23 +£0.18 0.02 0.67
Reader 3
BI-RADS category 2.65 = 0.88 1 4
MDEST density (%) 0.25 = 0.15 0.07 0.76
Radiologist density estimate (%) 0.27 £ 0.19 0.05 0.65
Reference-standard density (%) 0.25 £ 0.19 0.02 0.72
Reader 4
BI-RADS category 2.52 = 1.08 1 4
MDEST density (%) 0.25 + 0.15 0.07 0.76
Radiologist density estimate (%) 0.34 £ 0.25 0.05 0.85
Reference-standard density (%) 0.27 £ 0.20 0.01 0.72
Reader 5
BI-RADS category 2.52 +1.02 1 4
MDEST density (%) 0.25 = 0.15 0.07 0.76
Radiologist density estimate (%) 0.31 £0.26 0.05 0.85
Reference-standard density (%) 0.25 = 0.18 0.02 0.73
Reader 6
BI-RADS category 2.5+ 0.90 1 4
MDEST density (%) 0.25 = 0.15 0.07 0.76
Radiologist density estimate (%) 0.42 = 0.26 0.05 0.95
Reader 7
BI-RADS category 2.32 £1.06 1 4
MDEST density (%) 0.25 + 0.15 0.07 0.76
Radiologist density estimate (%) 0.44 = 0.27 0.05 0.95

* Readers 1-5 were trained in using the MDEST method, and readers 6 and 7 were not. Radiologist estimates of breast density

were based on visual estimates of density percentage.
T Mean values + standard deviations.

the reference-standard density and both
the MDEST- and the trained radiologist—
estimated densities and to obtain 95%
limits of agreement, the method of Bland
and Altman was used (26). Interreader
agreement among the radiologists was
measured by using k statistics (27). The
strengths of agreement were expressed in
k values: A value of 0.20 or less indicated
poor; 0.21-0.40, fair; 0.41-0.60, moder-
ate; 0.61-0.80, good; and 0.81-1.00,
very good agreement. The significance of
differences in overestimations of density
between the trained and untrained radiol-

ogists was estimated by using the un-
paired t test. For the statistical calcula-
tions, the radiologists’ density percentage
estimates were expressed as the mean of
the 10% range (eg, for 1%-10%, 5% was
used). Software, including SAS (SAS In-
stitute, Cary, NC) and Microsoft Excel
(Redmond, Wash), was used to perform
all statistical analyses.

We excluded 16 (6%) of the 260 mammo-
graphic views owing to technical prob-
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lems that were secondary to improper
breast boundary detection or the MDEST
program’s gross misclassification of the
gray-level histograms. The MDEST pro-
gram performed well in most cases. De-
scriptive statistics for the four methods of
evaluating mammographic density are
presented, according to radiologist and
view, in Tables 1 and 2.

Density Analyses

Pearson correlation coefficients for cor-
relations between the reference-stan-

dard density and the qualitative BI-
RADS-, MDEST-, and trained radiolo-
gist-estimated densities showed strong
positive linear relationships (Table 3).
These positive correlations indicate that
as the reference-standard density per-
centage increased, the values obtained
with the other methods also tended to
increase. Of these three estimated den-
sities, the trained radiologists’ estimates
had the highest correlation with the ref-
erence-standard density (R = 0.90), the
MDEST measurements had the second

Table 2

Descriptive Statistics for Breast Density on MLO Views, Estimated by Seven

Radiologists
Datum* Mean Value" Minimal Value Maximal Value
Reader 1
BI-RADS category 2.37 = 0.87 1 4
MDEST density (%) 0.25 + 0.17 0.06 0.82
Radiologist density estimate (%) 0.31 £ 0.26 0.05 0.95
Reference-standard density (%) 0.20 = 0.16 0.01 0.74
Reader 2
BI-RADS category 2.42 =091 1 4
MDEST density (%) 0.25 = 0.17 0.06 0.82
Radiologist density estimate (%) 0.23 = 0.21 0.05 0.85
Reference-standard density (%) 0.22 = 0.17 0.03 0.77
Reader 3
BI-RADS category 2.65 = 0.87 1 4
MDEST density (%) 0.25 = 0.17 0.06 0.82
Radiologist density estimate (%) 0.27 = 0.19 0.05 0.75
Reference-standard density (%) 0.24 = 0.18 0.02 0.76
Reader 4
BI-RADS category 2.51 +1.07 1 4
MDEST density (%) 0.25 = 0.17 0.06 0.82
Radiologist density estimate (%) 0.34 = 0.25 0.05 0.85
Reference-standard density (%) 0.26 = 0.2 0.01 0.82
Reader 5
BI-RADS category 2.52 +1.03 1 4
MDEST density (%) 0.25 = 0.17 0.06 0.82
Radiologist density estimate (%) 0.31 £0.26 0.05 0.85
Reference-standard density (%) 0.23 = 0.17 0.02 0.8
Reader 6
BI-RADS category 2.5+0.90 1 4
MDEST density (%) 0.25 = 0.17 0.06 0.82
Radiologist density estimate (%) 0.42 = 0.26 0.05 0.95
Reader 7
BI-RADS category 2.32 = 1.06 1 4
MDEST density (%) 0.25 = 0.17 0.06 0.82
Radiologist density estimate (%) 0.44 = 0.27 0.05 0.95

* Readers 1-5 were trained in using the MDEST method, and readers 6 and 7 were not. Radiologist estimates of breast density

were based on visual estimates of density percentage.
T Mean values + standard deviations.

highest correlation (R = 0.89), and the
qualitative BI-RADS categories had the
third highest correlation (R = 0.85).
The correlation of each method with the
reference-standard method was better
on the CC views than on the MLO views.
Correlation coefficients for agreement
between the CC and MLO views of the
same breast were 0.85 with MDEST;
0.96 with the reference-standard
method; and 0.94, 0.95, 0.94, 0.93, and
0.94 with the estimates of the five trained
radiologists.

Agreement of Reference-Standard Density
with MDEST- and Trained Radiologist-
estimated Densities

The method of Bland and Altman (26)
was used to assess agreement between
the reference-standard density and both
the MDEST- and the trained radiologist—
estimated densities. The mean overall
bias for the comparison between the
trained radiologists’ density estimates
and the reference-standard measurement
was an overestimation of 6%, compared
with an overestimation of 1% by the
MDEST program (Table 4). The 95% lim-
its of agreement between the trained
radiologist—estimated and reference-
standard densities were wider (—16%
to +27%), indicating greater error in
measuring density by using radiologist
estimates than by using MDEST. The
overall limits of agreement between the
reference-standard and MDEST densi-
ties ranged from —15% to +18%. The
MDEST program tended to overesti-
mate mammographic density (up to
+18%) more than it underestimated it
(up to —15%).

Untrained Radiologists

The densities estimated by the two un-
trained breast imagers had excellent
correlation with the reference-standard
measurement (R = .95). The untrained
radiologists overestimated the mammo-
graphic density percentage to a greater
extent than did the trained radiologists.
The untrained radiologists overesti-
mated density by 37% with respect to
the reference-standard density (Fig 3).
This was in contrast to the 6% overesti-
mation of the trained radiologists (P <
.001). There was no significant differ-
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ence in the assignment of qualitative Bl-
RADS density categories between the
trained and untrained radiologists (P >
.43).

Comparison with BI-RADS

A wide range of percent densities were
assigned to mammograms classified in
three of the four qualitative BI-RADS
categories (BI-RADS 2-4) (Table 5).
For example, qualitative BI-RADS cate-
gory 4 included mammograms with den-
sities of between 20% and 82%. There
was also a large range of qualitative BI-
RADS categories assigned to the same
range of percent densities. A mammo-
gram with 0%-24% density may have
been assigned to qualitative BI-RADS
category 1, 2, or 3 (Table 6) (Fig 2).

In Table 6, the new quantitative BI-
RADS density quartiles (0%-24%, 25%-
49%, 50%-74%, and 75%-100%) are
compared with the conventional qualita-
tive BI-RADS categories. The reference-
standard percent densities are grouped to
mimic the new quantitative BI-RADS
breast density quartiles. There was poor
agreement between the qualitative BI-
RADS density classifications and the new
quantitative BI-RADS density classifica-
tions, with use of the reference-standard
density as truth. If the new combined
qualitative and quantitative BI-RADS cat-
egory 4—indicating extremely dense
breast tissue—corresponded to greater
than 75% breast density, far fewer cases
would be classified as BI-RADS 4 com-
pared with the number of cases that
would be classified as qualitative BI-RADS
4. With use of the qualitative BI-RADS
system, 110 (17%) of the 650 cases (130
breasts times five radiologists equals 650
cases) in our study were assigned to cate-
gory 4. With use of the new quantitative
system, none of the 650 cases was as-
signed to category 4. With use of the old
qualitative BI-RADS system, 108 (17%)
of the 650 cases were classified as fatty
(category 1); with use of the new BI-
RADS quantitative system, 370 (57%)
cases were classified as fatty (category 1),
representing a downstaging of 40%.

Interobserver Agreement

The interobserver agreement values ob-
served for each density measurement

Table 3

Correlation of Reference-Standard Breast Density with Qualitative BI-RADS
Categories, MDEST Density, and Trained Radiologists’ Density Estimates

Density Estimate Correlated with Reference Standard

Correlation Method Qualitative BI-RADS MDEST Trained Radiologist Estimate
By view
cC 0.8682 0.9013 0.9124
MLO 0.8343 0.8880 0.8962
Overall 0.8509 0.8914 0.9035

Note.—Data are Pearson correlation coefficients.

Table 4

Mean Agreement between Density Measurement Methods

95% Limits of Agreement

Correlation Method Mean Bias* Lower Upper
Reference-Standard versus MDEST Density
By view
CE —0.0036 + 0.0797 —0.1630 0.1558
MLO —0.0244 + 0.0824 —0.1892 0.1404
Overall —0.01384 = 0.0816 —0.1770 0.1494
Reference-Standard Density versus Trained Radiologists’ Estimates
By view
cC —0.0469 + 0.1029 —0.2527 0.1589
MLO —0.0634 = 0.1117 —0.2868 0.1600
Overall —0.0551 + 0.1076 —0.2703 0.1601

* Mean bias values = standard deviations.

method indicate that there was strong
agreement among the trained radiolo-
gists. Intraclass correlation coefficients
were 0.88 for the radiologists’ estimates
of density percentage and 0.94 for the
radiologists’ determinations of the ref-
erence-standard density percentage, in-
dicating very good agreement among
the radiologists’ density measurements
obtained with these two methods. Pair-
wise comparison of the radiologists’ as-
signments of qualitative BI-RADS cate-
gories revealed good but lower agree-
ment, with k values (27) ranging from
0.61 to 0.76.

Time

The mean time to complete the quali-
tative BI-RADS density category as-
signments and density percentage es-
timations with the MDEST program
was 18 seconds per view (range,
13-22 seconds), with a mean standard

deviation of 8 seconds (range, 7-9 sec-
onds).

Our study findings demonstrate that
quantified breast density is a more ac-
curate and reproducible measure of
breast density than radiologist esti-
mates derived by using the conventional
qualitative BI-RADS density categories.
In our study, we observed large ranges
of percent densities among cases classi-
fied in three of the four qualitative BI-
RADS density categories, with up to a
62% range in the category 4 cases. We
also observed a large overlap in the
mammographic density percentages as-
signed to cases classified in the four
qualitative BI-RADS categories by five
breast imaging specialists, with up to a
40% range overlap between categories
3 and 4. A mammogram with 30% total
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breast density could be assigned to qual-
itative BI-RADS category 2, 3, or 4;
however, under the new system, it
would be assigned to category 2.
Similar results were found in a com-
parison between the qualitative esti-
mates based on the Wolfe parenchymal
patterns and the quantitative determi-
nations of density made by using manual
planimetry (28). This is not surprising,
given the subjective nature of both the
qualitative BI-RADS density categories
and the Wolfe parenchymal patterns.
More recently, Wang et al (21) sug-
gested that the visual density percent-
age estimates derived by three mam-
mographers may have led to the same
mammogram being assigned to differ-
ent qualitative BI-RADS categories.
With use of quantitative percent breast
density determinations, one is more
likely to detect subtle changes in breast
density that may be masked when they

Table 5

Range of Mammographic Density
Percentages Assigned to Qualitative
BI-RADS Categories by Trained

Radiologists
Qualitative BI-RADS Density Percentage
Category Range (%)

1 1-11

2 2-45

3 8-60

4 20-82

are classified in the same BI-RADS cate-
gory as the overall breast density.

Our results show that experienced
radiologists’ subjective density assess-
ments based on qualitative BI-RADS
categories may be quite different from
density assessments based on quantita-
tive BI-RADS categories. For example,
none of the 650 mammographic cases
judged to have qualitative category 4
density had greater than 75% breast
density according to quantitative BI-
RADS measures. In addition, the cases
with 0%-24% quantitative BI-RADS
category 1 (fatty) breast density would
have encompassed a majority (370

% Density Estimated by
Untrained Radiologists

00 02 04 06 08 1.0
% Density, Reference Standard
Figure 3:  Graph illustrates mammographic
density percentage visually estimated by two un-
trained radiologists versus reference-standard
density percentage. The untrained radiologists
significantly overestimated the percent breast
density relative to the reference-standard density
determined by the trained radiologists (P < .001).

Table 6

Qualitative BI-RADS versus Quantitative Density Determinations

Quantitative Density

Qualitative BI-RADS Score*

Percentage 1 2 3 4
0-24 17 (108/650) 29 (189/650) 11 (73/650) 0
25-49 0 3 (20/650) 21 (136/650) 6 (39/650)
50-74 0 2 (14/650) 11 (71/650)
75-100 0 0 0

* Data are percentages of cases with the given quantitative density percentage that were assigned the given BI-RADS score.
The numbers of cases used to calculate the percentages are in parentheses.

T The quantitative (ie, reference-standard) breast density ranges correspond to the new quantitative BI-RADS density
categories. Each breast (depicted on CC and MLO views) was assigned a single qualitative BI-RADS score by five trained
radiologists (130 breasts times five radiologists equals 650 cases).

[57%] of 650) of the mammograms,
many of which were conventionally as-
signed to qualitative BI-RADS category
2or 3.

A goal of the BI-RADS system is to
facilitate uniformity of physician re-
ports, and our results suggest that addi-
tional training would be necessary to
enable physicians to accurately trans-
late a visual assessment of density per-
centage into a quantitative assessment,
as recommended by the new BI-RADS
standards (1). In our study, the two un-
trained radiologists overestimated den-
sity by 37%. However, radiologists
could be rapidly trained to estimate
breast density by using a computerized
density measurement program so that
they could follow the new quantitative
BI-RADS density classifications. Fur-
thermore, use of the new quantitative
BI-RADS assessment may lead to the
“down coding” of breast density and
thus the creation of nonuniformity be-
tween the old and new standards and
the consequent hindering of longitudinal
research. A case previously assigned to
BI-RADS category 3 may now be as-
signed to BI-RADS category 1. Since
very few breasts have greater than 75%
density, the new quantified BI-RADS
may functionally approach a three-den-
sity-level system, with the majority of
mammographic cases assigned to cate-
gories 1 and 2.

The MDEST breast density determi-
nations were more accurate than the
radiologists’ visual estimates of breast
density, as indicated by the radiologists’
overestimating of breast density to a
greater degree and their larger varia-
tion in density estimates (relative to the
reference-standard density) compared
with the MDEST measurements. We
also observed good correlations be-
tween MDEST-derived density percent-
age and radiologist-determined refer-
ence-standard density percentage (R =
.89). Although this correlation was
slightly lower than that between the
trained radiologist—estimated and ref-
erence-standard densities (R = 0.90),
the MDEST-derived densities had tighter
agreement with the reference-standard
measurements than did the radiologists’
estimates. The MDEST program overesti-
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mated density by a mean of only 1%
(range, —15% to +18%), as compared
with a mean overestimation of density
of 6% by the trained radiologists (with a
wider range: —16% to +27%) relative
to the reference-standard density per-
centage.

Correlation coefficients for agree-
ment on density measurement between
the CC and MLO views favored the
trained radiologists, although both the
MDEST program and the radiologists
had good correlation. The MDEST pro-
gram performed better than the un-
trained radiologists in the estimation of
percent breast density. The two un-
trained breast imagers tended to over-
estimate density percentage by approx-
imately 37%, which was greater than
the percentage of overestimation by the
trained breast imagers. These findings
are in contrast to those of Lee-Han et al
(28): The single radiologist in their
study slightly underestimated the den-
sity percentage relative to the measured
area of density. This result may have
been secondary to some form of density
percentage estimation training received
by the radiologist, although this was not
specified.

Many of the computer programs
previously used to evaluate breast den-
sity have been only partially automated.
The density measurement methods
used by Byng et al (19) and Boone et al
(20) involved manual cropping of the
pectoral muscle to determine the breast
area on mammograms. In addition, the
Byng et al method involved manual de-
terminations of both breast edge and
breast density gray-level thresholds.
With the Byng et al method, it took less
than a minute to evaluate each image
(19). Our fully automated program au-
tomatically detects the breast edge,
crops the pectoral muscle, and esti-
mates the gray-level threshold for den-
sity segmentation. In addition, if manual
interactive thresholding (the reference-
standard method used in the current
study) is preferred, the MDEST user
interface is fast and simple to use, re-
quiring an average of 18 seconds per
view to evaluate both the BI-RADS cat-
egory-based density and the density
percentage. Investigators in two other

studies (10,21) have described fully auto-
mated programs for determining breast
density.

We found that percent breast den-
sity determinations were more accurate
on CC views than on MLO views. This
was true for both the MDEST densities
and the radiologist visual density esti-
mates. The MDEST program overesti-
mated density percentage by a mean of
2.4% on the MLO views and by a mean
of 0.4% on the CC views. The radiolo-
gists overestimated density by a mean
of 6.3% on the MLO views and by a
mean of 4.7% on the CC views. These
data suggest that in the future, CC views
alone may be adequate for assessing
percent breast density in temporal mea-
surements.

There were several limitations to
our study. The MDEST program had
technical errors, which led to a 6% case
rejection rate. Technical errors in-
cluded inaccurate breast border detec-
tion and gross misclassification of the
gray-scale histograms. Errors in both
the anterior breast border detection al-
gorithm and the pectoral muscle detec-
tion algorithm occurred and resulted in
inaccurate breast tissue area determi-
nations. Misclassification of the gray-
scale histograms resulted in improper
gray-level threshold determination, in-
accurate segmentation of the dense ar-
eas, and inaccurate density percentage
calculations. These histogram misclassi-
fication errors occurred more often on
the mammograms with extremely dense
and fatty pixels. Thus, MDEST cannot
yet be used as a stand-alone density
measurement method. Although further
development of computer visualization
techniques and additional training with
a large data set are needed to improve
the accuracy and robustness of MDEST,
the results of this study demonstrate the
feasibility of our approach and the
promise of using an automated or semi-
automatic system like MDEST to aid fu-
ture research efforts in the investigation
of mammographic breast density.

Another limitation of our study was
that the BI-RADS qualitative assess-
ments were subjective and could be in-
stitutionally defined. Six (86%) of the
seven radiologists received residency

training at different institutions, so
strong institutional bias was less likely
in this study. Also, there is no reference
standard for determining breast den-
sity, so there will always be some sub-
jective difference in determining mam-
mographic density, even when manual
segmentation is used. The averaging of
five radiologists’ segmentations may
have partially reduced this bias.

Our MDEST program calculates the
area of mammographic breast density,
which correlates with the area of fi-
broglandular tissue that is present.
However, volume is a more accurate
measure of the amount of breast tissue
than is area. Accurate determination of
the dense tissue volume requires sensi-
tometry and scatter and beam-harden-
ing corrections for each mammogram.
A rough estimate of dense tissue volume
could be determined by multiplying the
breast thickness, which is recorded for
each mammogram at our institution, by
the area of dense tissue. Wang et al (21)
described a computer-aided detection
method that is more accurate for esti-
mating dense mammographic tissue
composition because it involves the use
of a tissue-thickness-correction algo-
rithm. This concept of breast tissue vol-
ume may be of importance in the study
of breast cancer risk, because it is prob-
ably the volume of dense glandular
breast tissue—rather than the density
of breast tissue—that determines risk
(9). Wei et al (22) recently observed a
high correlation between our auto-
mated mammographic MDEST assess-
ment method and volumetric fibroglan-
dular tissue estimation at breast mag-
netic resonance imaging, suggesting
that estimates of change in mammo-
graphic density are close surrogates for
change in volumetric density. Further
investigation is needed to determine
whether rough estimates of dense tissue
volume can improve the correlation be-
tween breast density and breast cancer
risk.

In conclusion, the MDEST-derived
densities compared favorably to radiol-
ogist estimates of percent breast density
and were more reproducible than radi-
ologist estimates of the conventional
qualitative BI-RADS density categories.
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Qualitative and quantitative BI-RADS
density assessments differed markedly.
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Abstract. Studies have demonstrated a strong correlation between
mammographic breast density and breast cancer risk. Mammaographic breast
density may therefore be used as a surrogate marker for monitoring the response
to treatment in studies of breast cancer prevention or intervention methods. In
this study, we evaluated the accuracy of using mammograms for estimating
breast density by analyzing the correlation between the percent mammographic
dense area and the percent glandular tissue volume as estimated from MR
images. A data set of 37 patients who had corresponding MR images and
mammograms was collected. The glandular tissue regions in the MR slices
were segmented by a semi-automatic method and the percent glandular tissue
volume calculated. Mammographic breast density was estimated by an
automated image analysis program. It was found that the correlation between
the percent dense area of the CC and MLO views and the percent volumetric
fibroglandular tissue on MR images was 0.93 and 0.91, respectively, with a
mean bias of 4.4%. The high correlation indicates the usefulness of
mammographic density as a surrogate for breast density estimation.

1. Introduction

Previous studies have shown that there is a strong positive correlation between
breast parenchymal density on mammograms and breast cancer risk [1-3]. The
relative risk is estimated to be about 4 to 6 times higher for women whose
mammograms have parenchymal densities over 60% of the breast area, as compared
to women with less than 5% of parenchymal densities. The change in mammographic
breast density is therefore often used as an indicator for monitoring the effects of
preventive or interventional treatment of breast cancer.

Breast cancer risk is expected to depend on the volume of glandular tissue in the
breast. Mammographic density is a projection of the volume of glandular tissue onto
the two-dimensional image plane. To better understand the correlation between
mammographic density and breast cancer risk, it is important to investigate the
relationship between the projected areal density on mammograms and the volume of
glandular tissue in the breast. In this study, we investigate this relationship by
analyzing the percent volumetric glandular tissue in magnetic resonance (MR) images
and the percent dense area in corresponding mammograms for the same breasts.
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2. Materials and Methods

Our data set consisted of corresponding MR breast images and mammograms from
37 patients acquired between detection and biopsy. The MR image series used in this
study, which included coronal 3D T;-weighted pre-contrast images (coronal sections
2-5 mm thick, 32 slices; 3D Spoiled Gradient-Recalled Echo (SPGR); TE=3.3ms;
TR=10ms, Flip=40°, matrix=256x128, FOV=28-32cm right/left, 14-16cm
superior/inferior, scan time=2 min 38 sec) was part of a dynamic breast MRI study.
This 3D SPGR sequence produced full volume coverage of both breasts with
contiguous image slices. An example of images from one breast is shown in Fig. 1.
Although this is not the optimal pulse sequence for separating water and fat, the
fibroglandular parenchyma (~water) and fatty tissue are well separated with this
heavily T;-weighted acquisition and therefore the series was chosen for this study.

° a

mrD27r 26 mH0Z7r_25

> 0 O O

mri0z7r_z4 mH0Z7r 23 mri27r 22 mH0Z7r_21

mriZ7r_20 mri0Z7r_19 mndzZ7r 18

mri0z7r_16 mH0Z7r_13 mro27r_14

¥

mri0Z7r_12 mr0Z7r_11 mnidzZ7r_10 mr0Z7r_03

| F

mriZ7r_Dad mr0Z7r_07 mnidZ7r_06 mr0Z7r_05

(il il

mri0Z7r_D4 mr0Z7r_03 mndzZ7r_0Z mr0Z7r_01

Fig. 1. MR images of the right breast of a patient. The two-view mammogram of the
same breast is shown in Fig. 2.

We have developed a graphical user interface that displays the MR series and the
corresponding mammogram of each breast. The interface allows the user to perform
a combination of manual and automatic operations to segment the MR images. Each
MR slice is first thresholded to separate the breast from the surrounding region. For
slices close to the chest wall where no clear boundary can be seen, the boundary is
manually drawn and evaluated by radiologists. Background correction [4] using the
voxel values around the segmented breast region is employed to correct for the non-
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uniformity across the breast area due to the breast coil. The histogram of the voxel
values in the breast region is then formed and interactive thresholding is used to
segment the fibroglandular tissue from the fatty tissue. A morphological erosion
operation along the breast boundary then excludes the skin voxels from the
calculation of the fibroglandular tissue area in each slice. Finally, an integration of
the fibroglandular voxels in all slices relative to the breast volume provides the
percent volumetric fibroglandular tissue in the breast.

We have previously developed an automated image analysis tool (Mammographic
Density ESTimator) to assist radiologists in estimating mammographic breast density
[5]. MDEST performs dynamic range compression, breast boundary tracking,
pectoral muscle segmentation for the MLO view, automatic thresholding based on
gray level histogram analysis, and calculates the percent dense area on a
mammogram. We found that the correlation between the computer-estimated percent
dense area and radiologists’” manual segmentation was 0.94 and 0.91, respectively, for
CC and MLO views, with a mean bias of less than 2%. An example of a
mammogram segmented by MDEST is shown in Fig. 2.

0 1000 2000 3000 4000 5000

Fig. 2. Automated breast density segmentation from mammograms. Upper row: CC view.
Lower row: MLO view.

3. Results

Scatter plots of the percent volumetric fibroglandular tissue versus the percent
dense area on mammograms are shown in Fig. 3(a) and 3(b) for the CC- and MLO-
view mammograms, respectively. The correlation of percent dense area of the CC and
MLO views with the percent volumetric fibroglandular tissue on MR images was
found to be 0.93 and 0.91, respectively, with a mean bias of 4.4%.
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Fig. 3. Correlation of % volumetric fibroglandular tissue on MR images with % dense area on
mammograms for 37 patients. The left and right breasts are plotted as separate data
points on each graph. The dash lines are linear least squares fits to the data points.

4. Conclusion

Mammographic density is highly correlated with the volumetric fibroglandular
tissue in the breast, indicating its usefulness as a surrogate for breast density
estimation. The computerized image analysis tool, MDEST, is useful for estimation of
mammographic density. The automated analysis is expected to contribute to the
understanding of the relationship of mammographic density to breast cancer risk,
detection, and prognosis, and to the prevention and treatment of breast cancer.
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Abstract. Studies have demonstrated a strong correlation between
mammographic breast density and breast cancer risk. We have
previously developed a computerized system, mammographic density
estimator (MDEST), to estimate breast density automatically on
digitized film mammograms (DFM). In this study, we evaluated the
performance of the MDEST system on full field digital mammograms
(FFDM) and DFMs. The input to the system is a preprocessed dynamic
range compressed image. The breast region is first segmented by breast
boundary detection. The pectoral muscle is trimmed if it is an MLO
view. A rule-based classifier is then used to classify the breast image
into one of four classes according to the characteristics of its gray level
histogram. The dense area from the breast region is subsequently
segmented by automatic gray level thresholding. The breast density is
estimated as the percentage of the segmented dense area relative to the
breast area. In this study, two-view FFDM and the corresponding DFM
from 99 patients with 202 images in each set were used. The dense area
on each mammogram was segmented by 4 radiologists using interactive
thresholding and their average was used as the “gold standard”. The
MDEST system was directly applied to the FFDM and DFM data
without any re-training except that the preprocessing filter was modified
for FFDMs. We found that the correlation between the estimated percent
dense area and the gold standard was 0.850 and 0.873 on FFDM, and
0.885 and 0.824 on DFM, for CC and MLO views, respectively. The
results demonstrated the feasibility of estimating breast density
automatically on FFDM and DFM using the same MDEST system.

1. Introduction

Studies have demonstrated a strong correlation between breast density on mammograms and
breast cancer risk (Saftlas and Szklo 1987; Brisson et al. 1989; Saftlas et al. 1991; Oza and
Boyd 1993; Boyd et al. 1998; Yaffe et al. 1998). The relative risk is estimated to be about 4
to 6 times higher for women whose mammograms have parenchymal densities over 60% of
the breast area, as compared to women with less than 5% of parenchymal densities. The
strong correlation between breast density and breast cancer risk has prompted researchers to
use mammographic density as an indicator for monitoring the effects of preventive or
interventional treatment of breast cancer.

Because of the subjective nature of visual analysis, qualitative estimation may vary
from radiologist to radiologist. A computerized method for measuring mammographic
density would be useful as a supplement to the radiologist’s assessment. We have previously
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developed a computerized system, mammographic density estimator (MDEST) (Zhou et al.
2001), to estimate breast density automatically on digitized film mammograms (DFM). The
MDEST system performs dynamic range compression, breast boundary tracking, pectoral
muscle trimming for MLO view, gray level thresholding based on histogram analysis, and
calculation of the percent dense area on the mammogram. In the previous study, 260 digitized
4-view mammograms of 65 patients were used. The gold standard of percent dense area of
the breast region for each mammogram was obtained by averaging five radiologists’
manually segmented percent dense area. We found that the correlation between the computer-
estimated percent dense area and radiologists’ manual segmentation was 0.94 and 0.91, with
RMS errors at 6.1% and 7.2%, respectively, for CC and MLO views.

In this study, we investigate the feasibility of computerized mammogramic density
estimation on FFDMs and DFMs using the same image segmentation system. The MDEST
system was directly applied to the FFDM and the corresponding DFM without any re-training
except that the preprocessing filter was modified for FFDMs. The performance was evaluated
by analyzing the correlation between the computer-estimated mammographic density and the
gold standard obtained by radiologists’ interactive thresholding.

2. Materials and Methods

The data sets consisting of FFDM and the corresponding DFM of 99 patients with 202
images in each set were used. Each case contains the craniocaudal (CC) view and the
mediolateral oblique (MLO) view. The FFDM was acquired with a GE Senographe 2000D
system and the raw GE FFDM was processed by a Laplacian pyramid multi-resolution
preprocessing method (Wei et al. 2004). The preprocessed image was downsized to a pixel
size of 800 pm x 800 um image and 4096 gray levels. The DFM was acquired with
mammography systems approved by the Mammography Quality Standards Act (MQSA) and
was digitized with a LUMISYS 85 laser film scanner with a pixel size of 50 pm x 50 pm and
4096 gray levels. The digitized mammogram was also downsized to a 800 um x 800 pm
image using a 16x16 box filter.

Our previously developed computerized system MDEST was applied to the FFDMs
and DFMs to estimate the mammographic density without any re-training. The density
estimation was performed in three stages: breast region segmentation, image enhancement,
and gray level thresholding based on histogram analysis . First, the breast region was
segmented from the surrounding background by an automated breast boundary tracking
algorithm for DFM. For FFDM, thresholding was used to separate the breast region from the
background. Since our current pectoral muscle trimming program is not 100% accurate, the
pectoral muscle was manually trimmed on the MLO view images for both DFM and FFDM
in this study in order to separate the errors due to breast density segmentation from those due
to pectoral muscle trimming. Second, an adaptive dynamic range compression technique was
applied to enhance the DFM image. For FFDM image, a Laplacian pyramid multi-resolution
preprocessing method (Wei et al. 2004) was used for image enhancement. At the third stage,
for both FFDM and DFM, rule-based classification was used to classify the breast image into
one of four classes according to the characteristic features of its gray level histogram (Zhou et
al. 2001). For each image in the classified classes, a gray level threshold was determined
adaptively to segment the dense area from the breast region. The breast density was estimated
as the percentage of the segmented dense area relative to the breast area. As an example,
typical mammograms in the four classes with the corresponding enhanced images,
histograms, selected thresholds and the segmented image are shown in Figure 1. To evaluate
the performance of MDEST, the computer segmentation results were compared to those by
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manual segmentation with interactive thresholding by four MQSA radiologists. The “gold
standard” of percent dense area for each mammogram was obtained by averaging the
manually segmented percent dense areas of the four radiologists.

3. Results

Figures 2(a)-(d) show the comparison of the percent dense area between the estimation by the
MDEST system and the gold standard on FFDM and DFM for CC- and MLO-view
mammograms, respectively. Table 1 summarizes the comparison between the MDEST
performance and the gold standard for FFDM and DFM, respectively. The correlation
between the computer-estimated percent dense area and the gold standard is 0.850 and 0.873
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Figure 1. Typical mammograms in the four density classes and the corresponding enhanced
and segmented images, histograms and thresholds. The columns from left to right
correspond to the original image, enhanced image, segmented image and the
histogram. Rows from top to bottom correspond to class one to four.
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Figure 2. Comparison of the percent dense area between the estimation by the
MDEST system and the gold standard. The dashed line represents the
linear regression of the data on the plot. (a) FFDM CC view, (b) FFDM
MLO view, (c) DFM CC view, (d) DFM MLO view.

Table 1. The correlation and RMS difference between the estimated percent
dense area by the MDEST system and the gold standard (average of four
MQSA radiologists).

FFDM DFM
Image subsets | Correlation ~ RMS Error | Correlation  RMS Error
CC view 0.850 7.26% 0.885 6.87%
MLO view 0.873 5.70% 0.824 8.16%
All images 0.859 6.52% 0.855 7.54%

on FFDM, and 0.885 and 0.824 on DFM, for CC and MLO views, respectively. For all of the
images combining CC- and MLO-views, the correlation is 0.859 and 0.855 on FFDM and
DFM, respectively. The RMS difference in the percent dense area between the MDEST
estimation and the gold standard is 7.26%, 5.70% and 6.52% on FFDM, and 6.87%, 8.16%
and 7.54% on DFM for CC-view alone, MLO-view alone, and combined CC and MLO-

views, respectively.
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4. Conclusion

Our preliminary study demonstrated that the estimation of mammographic density could be
performed efficiently by the automated image analysis tool. The computer-estimated percent
dense area had a high correlation with the gold standard obtained from averaging four MQSA
radiologists’ manual segmentation. The results also demonstrated the feasibility of estimating
breast density automatically on FFDM and DFM using the same MDEST system. Further
study will be conducted to improve the breast density segmentation accuracy.
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Computerized pectoral muscleidentification on ML O-view
mammograms for CAD applications

Chuan Zhou, Lubomir M. Hadjiiski, Chintana Paramagul, Berkman Sahiner, Heang-Ping Chan, Jun Wel
Department of Radiology, The University of Michigan, Ann Arbor, M| 48109-0904

ABSTRACT

Automatic identification of the pectora muscle on MLO view is an essential step for computerized analysis of
mammograms. It can reduce the bias of mammographic density estimation, will enable region-specific processing in
lesion detection programs, and also may be used as a reference in image registration algorithms. We are developing a
computerized method for the identification of pectoral muscle on mammograms. The upper portion of the pectoral
edges was first detected to estimate the direction of the pectoral muscle boundary. A gradient-based directional (GD)
filter was used to enhance the linear texture structures, and then a gradient-based texture analysis was designed to
extract a texture orientation image that represented the dominant texture orientation at each pixel. The texture
orientation image was enhanced by a second GD filter. An edge flow propagation method was developed to extract
edges around the pectoral boundary using geometric features and anatomic constraints. The pectoral boundary was
finally generated by a second-order curve fitting. 118 MLO view mammograms were used in this study. The pectoral
muscle boundary identified on each image by an experienced radiologist was used as the gold standard. The accuracy of
pectoral boundary detection was evaluated by two performance metrics. One is the overlap percentage between the
computer-identified area and the gold standard, and the other is the root-mean-square (RMS) distance between the
computer and manually identified pectoral boundary. For 118 MLO view mammograms, 99.2% (117/118) of the
pectoral muscles could be identified. The average of the overlap percentage is 94.8% with a standard deviation of
20.9%, and the average of the RMS distance is 4.3 mm with a standard deviation of 5.9 mm. These results indicate that
the pectoral muscle on mammograms can be detected accurately by our automated method.

Keywords: Computer-aided detection, Pectoral muscle trimming, Breast density estimation, Directional gradient filter

1. INTRODUCTION

Breast cancer is one of the leading causes of cancer mortality among women® 2. At present, the most successful method
for the early detection of breast cancer is screening mammography®. It has been demonstrated that an effective
computer-aided diagnosis (CAD) system can provide a second opinion to the radiologists and improve the accuracy of
detection and characterization of mammographic abnormalities, which, in turn, may reduce unnecessary biopsies.
Studies have shown that there is a strong positive correlation between breast parenchymal density on mammograms and
breast cancer risk." “® The relative risk is estimated to be about 4-6 times higher for women whose mammograms have
parenchymal densities over 60% of the breast area, as compared to women with less than 5% of parenchymal densities.
Mammograms are analyzed visually by radiologists, the qualitative response may vary from radiologist to radiologist
due to the subjective nature of visual analysis. We have previously developed a computerized system, mammographic
density estimator (MDEST), to estimate breast density automatically on digitized film mammograms.” For each
mammogram, the breast region was first segmented by breast boundary detection and, for the mediolateral oblique
(MLO) view, with additional pectoral muscle trimming. A gray level threshold was then automatically determined to
segment the dense tissue from the breast region. The breast density was estimated as the percentage of the segmented
dense area relative to the breast area. Our preliminary study indicated that the computer-estimated mammographic
breast density correlated closely with the “reference standard” obtained by averaging five experienced radiologists
manual segmentations and the average bias was much less than that of the radiologists’ visual estimation.

Automatic identification of the pectoral muscle is an essential step for computerized analysis of mammograms.
Accurate segmentation of the pectoral muscle on MLO-view mammograms can reduce the bias of mammographic
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density estimation and improve the performance of our MDEST method. It will enable region-specific processing in
lesion detection programs to reduce false negatives. False positives can be reduced if the detected objects in the pectoral
muscle area can be selectively suppressed. The identification of the pectoral muscle may also be used as a reference in
image registration algorithm for multiple-view analysis of mammograms.

In our preliminary study ’, the pectoral muscle was trimmed using a gradient-based pectoral edge detection method: the
initial edge in the pectoral region was first found as the maximum gradient point by aline-by-line gradient analysis from
the chest wall to the breast boundary. An edge validation process was then performed to remove the false pectoral
muscle edges using aline fitting method, and a coarse direction of the pectoral edges was estimated from the validated
edges. The remaining pectoral edges were extrapolated along the estimated pectoral direction. Finally, a second order
curve was fitted to the detected pectoral edges to generate the pectoral boundary. Using the above method, 74.6% of the
pectoral muscles were determined by visual judgment to be correctly identified in this preliminary study.

The purpose of this study is to improve the performance of our previously developed pectoral muscle segmentation
method. Accurate identification of the pectora muscle on mammograms is challenging, especialy for the improperly
positioned MLO-view images and the images containing dense glandular tissues overlapping with the pectoral muscle
region. In this work, we devel oped a two-stage gradient-based texture analysis method to detect the pectoral boundary.
In the first stage, linear texture structures were enhanced and the directional gradients were computed using a
directional filter. In the second stage, a texture orientation image was derived as the dominant texture orientation at each
pixel. A diffusion filter was used to estimate the global direction of the pectoral boundary. An edge flow propagation
method was devel oped to extract the pectoral edges with the guidance of the estimated global direction.

2. MATERIALSAND METHODS
2.1 Materials

In this study, 118 MLO-view mammograms from 103 patients were randomly selected from the patient files in the
Radiology Department at the University of Michigan. Data collection was approved by the Institutional Review Board
and individual patient informed consent was waived. The mammograms were acquired with Mammography Quality
Standards Act (MQSA) approved GE DMR (Milwaukee, Wisconsin) mammography units using Kodak MR2000
screen/film systems. All films were digitized with a LUMISY S 85 laser film scanner with a pixel size of 50 umx50 um
and 4096 gray levels. The resolution of the mammograms was reduced to 800 pum x 800 um for segmentation of the
pectoral muscle.

2.2 Pectoral muscle identification

Figure 1 summarizes the automatic pectoral muscle identification scheme. The interference due to overlapping of the
glandular tissue on the pectoral muscle region is first reduced by smoothing the mammogram using an edge preserving
anisotropic diffusion filter 8. Because less glandular tissue appears at the upper region of the pectoral muscle, the upper
portion of the pectoral boundary usually remains sharp after smoothing and can be detected robustly by searching the
maximum horizontal gradients on the diffused image. The extrapolation of the detected upper pectoral boundary
provides a coarse global direction of the pectoral boundary. To refine the entire pectoral boundary, a gradient-based
directional (GD) filter was first employed to enhance the linear texture structures on the mammogram. The orientation
of the digitized image could be automatically determined by the curvature of the breast boundary. For example, if the
image was positioned such that the chest wall was on the right side, it could be assumed that the pectoral boundary is at
a direction approximately from the top-left to the bottom-right with less than 45 degree deviation. Therefore, in our
study, the kernel of the GD filter was designed as a step function with 45 degree orientation. After the pectoral edge was
enhanced by the GD filter, a gradient-based texture analysis’ was used to compute an orientation image which
represented the dominant texture orientation at each pixel. The orientation image was smoothed using an edge
preserving mean shift algorithm™ that iteratively shifted each pixel to the average of the pixelsin its neighborhood. The
texture patterns with dominant texture orientations directing from the top-left to the bottom-right, which were more
likely to be the pectoral edges, were enhanced by applying a second GD filter to the smoothed orientation image.
Candidate edges of the pectoral muscle were detected on the enhanced orientation image using a ridge-tracking
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agorithm. The ridges were tracked by searching for the local maximum along the coarse global direction estimated, as
described above, by the upper pectoral boundary on the anisotropic diffused image. With the guidance of the estimated
global direction of the pectoral boundary and the anatomical constraints, an edge flow propagation algorithm was then
used to extract the boundary points of the pectoral muscle by pruning the edges that are less likely to lie on the pectoral
boundary. A second order curve fitting was finally used to generate the pectoral muscle boundary. Figure 2 shows
examples of the intermediate images of pectoral boundary enhancement and edge tracking corresponding to the various
stages shown in the flowchart in Figure 1.

3.RESULTS

An experienced MQSA-radiologist used a graphical user interface to manually draw the pectoral muscle boundary on
each MLO-view mammogram, which was then used as the gold standard for the evaluation of the performance of our
pectoral muscle detection program.

For each MLO view mammogram, the accuracy of pectoral boundary detection was evaluated by two performance
metrics. the percentage of overlap, defined as the ratio of the overlap area between the computer detected pectoral
muscle area and the gold standard relative to the gold standard, and the root-mean-square (RMS) distance obtained by
calculating the shortest distance point by point between the computer-identified pectoral boundary and the manually
marked pectoral boundary. For the data set of 118 MLO view mammograms, 99.2% (117/118) of the pectoral muscles
could be identified, the average of the percent overlap area is 94.8% with a standard deviation of 20.9%, the average of
the RM S distance is 4.3 mm with a standard deviation of 5.9 mm.

Figure 3 shows some examples of pectoral boundary identification on mammograms. The computer identified pectoral
boundaries were shown in white lines and the dark lines show the radiologist’s hand drawn boundaries. Figure 3 (a)-(b)
show the pectoral boundary can be identified accurately on mammograms with weak pectoral edges (figure 3(a) ) and a
large area of dense tissues overlapping on the pectoral muscle area (shown in figure 3(b) ). Figure 3(c)-(d) show two
examples of less accurate pectoral boundaries detected by the computer. Figure 3(e) shows the only case in this data set
that the computer failed to detect the boundary.

4. CONCLUSION

The newly developed gradient-based directional filter and the dominant texture orientation estimation method can
enhance the pectoral boundary regions. The edge flow propagation method can accurately extract pectoral edges to
generate the pectoral boundary. Automatic pectoral muscle identification will provide the foundation for many
mammographic image analysis tasksin CAD applications.
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Figure 2. Example of boundary enhancement and segmentation of pectoral muscle. (a) original image; (b) texture
orientation image after first GD filter and texture-flow analysis; (c) ridge image enhanced by the 2™
GD filter; (d) tracked ridges; (e) smoothed image using anisotropic diffusion filter; (f) initial pectora
edges detected from the smoothed image in (€) for the estimation of the coarse direction of the pectoral
boundary; (g) propagated pectoral edges on the ridge image (c) with the guidance of the coarse

direction estimated from the smoothed image shown in (f); (h) the final identified pectoral boundary
after 2 order curvefitting.
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(d)

Figure 3. Examples of pectoral boundary segmentation on mammograms. (a)-(b): accurate identification of
pectoral boundary; (c)-(d): less accurate identification of pectoral boundary; (e) the only
mammogram in our data set that the computer failed to identify the pectora muscle due to the
small portion of the pectoral muscle area within the breast region.
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Breast Density Estimation: Correlation of Mammaographic Density and MR
Volumetric Density

Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B,
Chenevert T, Goodsitt MM

Studies have demonstrated a strong correlation between mammographic breast
density and breast cancer risk. Mammographic breast density may therefore be used
as a surrogate marker for monitoring the response to treatment in studies of breast
cancer prevention or intervention methods. In this study, we evaluated the accuracy
of using mammograms for estimating breast density by analyzing the correlation
between the mammographic areal density and the glandular tissue volume as
estimated from MRI.

A data set of fifty patients who had corresponding MR images and mammograms was
collected. The coronal MR images provided full volume coverage of both breasts with
contiguous image sections. Heavily T1-weighted acquisition was used which
produced images with well-separated dense parenchyma and adipose tissue. The
glandular tissue regions in the MR sections were outlined interactively by
experienced radiologists with a graphical user interface and the percent glandular
tissue volume calculated. Mammaographic density was estimated with an automated
image analysis program and compared to that provided by manual segmentation. The
computer algorithm included dynamic range compression, breast boundary tracking,
and automatic thresholding based on analysis of the gray level histogram. The dense
tissue regions on the mammogram were then segmented and the percent dense area
estimated.

The correlation between the computer-estimated percent dense area and radiologists’
manual segmentation of mammaographic density was found to range from 0.91 to 0.94
in an independent set of mammograms. The analysis of the relationship between
mammographic percent dense area and MR percent glandular tissue volume is
underway. We will discuss the correlation of the breast fibroglandular-to-adipose
ratios estimated from these two approaches.
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Mammographic breast density, an indicator of the proportion of fibroglandular vs. fatty
tissue in the breast, has been found to have strong correlation with breast cancer risk.
Mammographic breast density has therefore been used for monitoring the response in
studies of preventive or interventional treatment of breast cancer. Breast density changes
during the course of treatment are often estimated visually on mammograms by
radiologists; which involves large inter- and intraobserver variations. The goal of this
project is to develop an automated image analysis method that can provide a more
consistent and reproducible estimate of the percent dense breast area on a mammogram.

An automated computer program has been developed that performs breast density analysis
using the following steps: detection of the breast boundary, reduction of the image dynamic
range, analysis and classification of the shape of the gray level histogram, adaptive gray
level thresholding, and estimation of the percent dense tissue area relative to the breast area.
The performance of the algorithm was evaluated by comparing the computer segmentation
results to manual segmentation with interactive thresholding by five radiologists.

To further investigate the relationship between the mammographic breast density and the
amount of fibroglandular tissue in the breast, the image analysis program was applied to the
mammograms of 37 patients who had corresponding magnetic resonance (MR) images of
the breasts. The fibroglandular tissue regions in the MR slices were segmented interactively
with a user interface, and the percentage of fibroglandular tissue volume in the breast
estimated. The correlation between the percent dense area estimated from mammograms
and the percent volumetric fibroglandular tissue estimated from MR images was studied.

We found that the correlation between the computer-estimated percent dense area and the
average of the five radiologists’ manual segmentation was 0.94 and 0.91, respectively, for
CC and MLO views, with a mean bias of less than 2%. The percent breast dense area of the
CC and MLO views has a correlation of 0.92 and 0.91, respectively, with the percent
volumetric fibroglandular tissue on MR images. Mammaographic density is therefore highly
correlated with the volumetric fibroglandular tissue in the breast, indicating its usefulness as
a surrogate for breast density estimation.

The computerized image analysis tool is useful for breast density estimation on
mammograms. The automated analysis is expected to contribute to the understanding of the
relationship of mammographic density to breast cancer risk, detection, and prognosis, and to
the prevention and treatment of breast cancer.

The U.S. Army Medical Research Materiel Command under DAMD17-01-1-0326
supported this work.
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Breast Density Estimation on Mammograms and MR Images: A Tool for Assessment
of Breast Cancer Risk

Jun Wei, Heang-Ping Chan, Mark A. Helvie, Lubomir M. Hadjiiski,
Berkman Sahiner, Marilyn A. Roubidoux, Chuan Zhou, Sophie Paquerault,
Thomas Chenevert, Mitchell M. Goodsitt

PURPOSE: Previous studies have found that mammographic breast density is highly
correlated with breast cancer risk. We have developed a computerized image analysis tool,
Mammography Density ESTimator (MDEST), to estimate the percent dense area on
mammograms. In this study, we analyzed the correlation between mammographic percent
dense area and percent volumetric fibroglandular tissue on MR images.

METHOD AND MATERIALS: For the estimation of mammographic breast density,
MDEST performs the following procedures: detection of the breast boundary, reduction of
the image dynamic range, analysis and classification of the gray level histogram, adaptive
gray level thresholding, and estimation of the percent dense tissue area relative to the
breast area. The performance of MDEST was validated by comparing its segmentation to
that with manual interactive thresholding by five radiologists in 260 mammograms. For
the estimation of the percent volume of fibroglandular tissue in breast MR images, a semi-
automatic method has been developed to segment the fibroglandular tissue from each slice.
First, the breast boundary is detected automatically. A deformable model and manual
modification are used to correct for incorrectly detected boundaries that usually occur in
slices near the chest wall where the breast boundary is not well-defined. Because of the
nonuniformity of the breast coil, the signal intensity in the breast region is not uniform
across the field of view. A background correction technique that estimates the low
frequency background from the gray levels along the breast boundary is developed to
reduce the nonuniformity. Finally, manual interactive thresholding of the gray level
histogram in the breast region is used to separate the fibroglandular from the fatty region.
The tissue volume is calculated by integration over all slices containing the breast. A data
set of 54 cases having MR images and corresponding 4-view mammograms was used in
this study. The MR images were coronal 3D SPGR T1-weighted pre-contrast images.

RESULTS: The percent volume of fibroglandular tissue had a correlation of 0.92 and
0.91 with the percent dense area obtained on CC-view and MLO-view mammograms,
respectively. The percent mammographic dense area slightly overestimates the percent
volume with a mean bias of 3%.

CONCLUSIONS: Mammographic density is highly correlated with the volumetric
fibroglandular tissue in the breast, indicating its usefulness as a surrogate for breast
density estimation and thus for monitoring breast cancer risk.



A4

Comparison of mammographic density estimated on digital mammograms and screen-film
mammograms

Heang-Ping Chan, Jun Wei, Chuan Zhou, Mark A. Helvie, Marilyn Roubidoux, Janet Bailey,
Lubomir Hadjiiski, Berkman Sahiner

PURPOSE: To compare breast density estimated on pairs of digital mammogram (DM) and screen-
film mammogram (SFM) obtained from the same patients.

METHODS AND MATERIALS: We are comparing image information on DMs and SFMs for
radiologist’s interpretation and computerized image analysis. One hundred forty-five pairs of DM
and SFM (76 CC views and 69 MLO views) were collected with IRB approval from 68 patients.
The time interval between the DM and SFM ranged from 0 to 118 days (median=21 days). The
SFMs were acquired with GE DMR systems and the DMs were acquired with a GE Senographe
2000D system. Both the DMs and the SFMs were acquired with automated exposure techniques
that selected the appropriate target, filter, and kVp. The SFMs were digitized with a laser film
scanner. The breast boundaries on the DMs and SFMs were detected automatically by the
computer. The mammograms were displayed on a workstation with a graphical user interface that
allowed interactive thresholding of the gray level histograms to segment the dense region from the
fatty region. The DMs and SFMs were segmented independently in separate sessions so that the
observer could not compare the density of the corresponding DM and SFM. Hard copies of the
displayed images were available for reference during segmentation. The mammographic density
was estimated as the percent dense area relative to the breast area, excluding the pectoral muscle in
the MLO views.

RESULTS: The correlation between the mammographic density on SFM and DM was 0.94 and
0.92, the root-mean-square residual was 4.5% and 4.6%, and the average ratio of mammaographic
density estimated on SFM to that on DM of the same breast was 1.18 and 1.22, respectively, for CC
and MLO views. The differences in the percent dense area between the DM and SFM were
statistically significant (paired t test: p<0.0000001) for both views. The DMs used harder beams
(Mo/Mo 4.5%, Mo/Rh 22.4%, Rh/Rh 73.1%) while the SFMs used softer beams (Mo/Mo 44.2%,
Mo/Rh 48.1%, Rh/Rh 7.8%). The peak potential used for DM was 1 to 5 kVp higher than that for
SFM in 84% of cases.

CONCLUSION: Breast density on DMs generally appears to be lower than that on SFMs because
of the harder beam quality used and image processing applied to the DMs. The lower density may
improve the mammographic sensitivity for lesion detection on dense breasts. However, for patients
with SFMs and DMs taken over time, comparison of serial mammograms for breast density
changes will be problematic.
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Computerized mammographic breast density estimation: Expectation-Maximization estimation and neural
network classification of breast density

Chuan Zhou, Lubomir M.Hadjiiski, Berkman Sahiner, Heang-Ping Chan, Mark A. Helvie, Jun Wei

PURPOSE:

Our previous study showed the feasibility of a rule-based automatic breast density estimation method. However, the
rule-based technique could not classify the very fatty and very dense breasts consistently with high accuracy because
some of these breasts have very similar gray level histograms. This study develops a new neural network classifier to
improve the performance of rule-based breast density estimation.

MATHOD & MATERIALS:

A mammogram is digitized and the pixel size is reduced to 0.8 mm. The breast region is first segmented by an
automatic boundary tracking and a pectoral muscle trimming algorithm. An adaptive dynamic range reduction
technique is used to reduce the range of the gray levels in the low frequency background and to enhance the separation
of the gray levels of the dense and fatty regions. The breast images are first classified by a rule-based method into a
class of median dense and a class of combined very dense/fatty breasts based on the characteristics of their gray level
histograms. An Expectation-Maximization (EM) algorithm is then applied to the latter class to extract the gray level
features. One morphological feature and 12 EM extracted gray level features are input to a feedforward neural network
to further classify the mammograms in the combined class into a class of very dense breasts and a class of very fatty
breasts. For each class, a gray level threshold is automatically estimated to segment the dense tissue. For comparison,
an experienced radiologist provided a manually segmented percent dense area by interactive thresholding.

RESULT:

In this preliminary study, 498 mammograms from 141 patients were used and 243 were classified into the very
dense/fatty combined class by the rule-based classifier. With a jackknife method, this class was randomly partitioned
into four non-overlapping groups. In each jackknife cycle, three groups were used for training and one group for
testing. The overall accuracy for classification of the four test groups into very dense and very fatty breasts reached
99.6% by the neural network, and 84.8% could be reached by our previous rule-based classifier.

CONCLUSION

The results demonstrate the feasibility of training a neural network classifier for the classification of very dense and
fatty breasts. The neural network can be trained very well using the morphological feature and the features extracted by
the EM algorithm. Combining the rule-based method with the NN classifier, the two-stage classification improved the
performance of our previous breast density estimation technique.
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Performance evaluation of an automated breast density estimation system
for digital mammograms and digitized film mammograms

Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski
LM, Sahiner B

Studies have demonstrated a strong correlation between mammographic breast density
and breast cancer risk. We have previously developed a computerized system,
mammographic density estimator (MDEST), to estimate breast density automatically on
digitized film mammograms (DFM). In this study, we evaluated the performance of the
MDEST system on full field digital mammograms (FFDM) and DFMs. The input to the
system is a preprocessed dynamic range compressed image, the breast region is first
segmented by breast boundary detection. The pectoral muscle is trimmed if it is an MLO
view. A rule-based classifier is then used to classify the breast image into one of four
classes according to the characteristics of its gray level histogram. A gray level threshold
is determined to segment the dense area from the breast region. The breast density is
estimated as the percentage of the segmented dense area relative to the breast area. In this
study, two-view FFDM and the corresponding DFM from 99 patients with 202 images in
each set were used. The dense area on each mammogram was segmented by 4
radiologists using interactive thresholding and their average was used as the “ground
truth.” The MDEST system was directly applied to the FFDM and DFM data without
any re-training except that the preprocessing filter was modified for FFDMs. We found
that the correlation between the estimated percent dense area and the truth was 0.846
(0.813, 0.862) and 0.855 (0.808, 0.861) on FFDM, and 0.880 (0.867, 0.858) and 0.765
(0.766, 0.739) on DFM, for CC and MLO views, respectively. The results demonstrated
the feasibility of estimating breast density automatically on FFDM and DFM using the
same MDEST system.
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Computerized pectoral muscle identification on MLO-view mammograms
for CAD applications

Chuan Zhou, Lubomir M. Hadjiiski, Chintana Paramagul, Berkman Sahiner,
Heang-Ping Chan, Jun Wei
(Department of Radiology, The University of Michigan, Ann Arbor, M1 48109-0904)

SUMMARY:: Automatic identification of the pectoral muscle on MLO view is an essential step for
computerized analysis of mammograms. It can reduce the bias of mammographic density estimation,
will enable region-specific processing in lesion detection programs, and also may be used as a
reference in image registration algorithms. We are developing a computerized method for the
identification of pectoral muscle on mammograms.

The upper portion of the pectoral edges was first detected to estimate the direction of the pectoral
muscle boundary. A gradient-based directional bandpass (GDB) filter was used to enhance the linear
texture structures, and then a gradient-based texture analysis is designed to extract a texture orientation
image that represented the dominant texture orientation at each pixel. The texture orientation image
was enhanced by a second GDB filter. An edge flow propagation method was developed to extract
edges around the pectoral boundary using geometric features and anatomic constraints. The pectoral
boundary was finally generated by a second-order curve fitting. 118 MLO view mammograms were
tested in this study. The pectoral muscle boundary identified on each image by an experienced
radiologist was used as the gold standard.

The accuracy of pectoral boundary detection was evaluated by two performance metrics. One is the
overlap percentage between the computer-identified area and the gold standard, and the other is the
root-mean-square (RMS) distance between the computer and manually identified pectoral boundary.
For 118 MLO view mammograms, 99.15% (117/118) of the pectoral muscles could be identified. The
average of the overlap percentage is 85.9% with a standard deviation of 14.0%, and the average of the
RMS distance is 4.31 mm with a standard deviation of 5.94 mm. These results indicate that the
pectoral muscle on mammograms can be detected accurately by our automated method.



Computerized pectoral muscle identification on MLO-view mammograms
for CAD applications

Chuan Zhou, Lubomir M. Hadjiiski, Chintana Paramagul, Berkman Sahiner,
Heang-Ping Chan, Jun Wei
(Department of Radiology, The University of Michigan, Ann Arbor, MI 48109-0904)

PURPOSE: The pectoral muscle is imaged in most of the medial-lateral obliqgue (MLO) view
mammograms. Automatic identification of the pectoral muscle is an essential step for computerized
analysis of mammograms. It can reduce the bias of mammographic density estimation, will enable
region-specific processing in lesion detection programs, and also may be used as a reference in image
registration algorithms. The goal of this study is to develop an automated method to identify the
pectoral muscle on mammograms.

METHOD & MATERIALS: Because of noise and the overlapping structures, the pectoral boundary
is usually detected as pieces of edges mixed with a large number of false edges. The pieces of edges
have to be pruned and linked to obtain a continuous boundary. We are developing a pectoral boundary
detection algorithm based on gradient-based texture orientation analysis. The interference due to
overlapping of the glandular tissue on the pectoral muscle region is first reduced by blurring the
mammogram using an edge preserving anisotropic diffusion filter. Because less glandular tissue
appears at the upper region of the pectoral muscle, the upper portion of the pectoral boundary usually
remains sharp after blurring and can be detected robustly by searching the maximum horizontal
gradients on the diffused image. The extrapolation of the detected upper pectoral boundary provides a
coarse global direction of the pectoral boundary. To explore and refine the entire pectoral boundary, a
gradient-based directional bandpass (GDB) filter is first employed to enhance the linear texture
structures on the mammogram. A gradient-based texture analysis is then used to compute an
orientation image which represents the dominant texture orientation at each pixel. The orientation
image is smoothed using an edge preserving mean shift algorithm that iteratively shifts each pixel to
the average of the pixels in its neighborhood. A second GDB filter is applied to the smoothed
orientation image to enhance the texture patterns that have high similarity in the dominant texture
orientations. Candidate edges of the pectoral muscle are detected on the enhanced orientation image
using a ridge-tracking algorithm. With the guidance of the estimated global direction of the pectoral
boundary and the anatomical constraints, an edge flow propagation algorithm is used to extract the
boundary points of the pectoral muscle by pruning the edges that are less likely to lie on the pectoral
boundary. A second order curve fitting is used to generate the final pectoral muscle boundary. 118
MLO view mammograms from 103 patients were randomly selected for the evaluation of the
algorithm in this study. The mammograms were digitized with 0.05 mm/pixel resolution and reduced
to a resolution of 0.8 mm/pixel for pectoral muscle identification. An experienced radiologist used a
graphical user interface to manually draw the pectoral muscle boundary on each mammogram, which
was then used to define the pectoral muscle region and used as the gold standard for the evaluation of
computer performance.

RESULTS: For each MLO view mammogram, the accuracy of pectoral boundary detection was
evaluated by two performance metrics: the percentage of computer detected pectoral muscle area
overlapped with the gold standard, and the root-mean-square (RMS) distance between the computer-
identified pectoral boundary and the manually marked pectoral boundary. For 118 MLO view
mammograms, 99.15% (117/118) of the pectoral muscles could be identified, the average of the
percent overlap area is 85.9% with a standard deviation of 14.0%, the average of the RMS distance is
4.31 mm with a standard deviation of 5.94 mm.



NEW WORK TO BE PRESENTED: Accurate identification of the pectoral muscle on
mammograms is challenging, especially for the improperly positioned MLO-view images and the
images containing dense glandular tissues overlapping with the pectoral muscle region. In this work,
we developed a two-stage gradient-based texture analysis method to detect the pectoral boundary. In
the first stage, linear texture structures were enhanced and the directional gradients were computed
using a directional bandpass filter. In the second stage, a texture orientation image was derived as the
dominant texture orientation at each pixel. A diffusion filter was used to estimate the global direction
of the pectoral boundary. An edge flow propagation method was developed to extract the pectoral
edges with the guidance of the estimated global direction.

CONCLUSION: The newly developed gradient-based directional filter and the dominant texture
orientation image estimation method can enhance the pectoral boundary regions. The edge flow
propagation method can accurately extract pectoral edges to generate the pectoral boundary. Automatic
pectoral muscle identification will provide the foundation for many image analysis tasks in CAD
applications.



A8
Computerized mammographic breast density estimation on full field digital mammogram and
digitized film mammogram

Chuan Zhou, Heang-Ping Chan, Mark A. Helvie, Jun Wei, Jun Ge, Lubomir M.Hadjiiski, Chintana Paramagul, Marilyn
A. Roubidoux, Caroline E. Blane, Berkman Sahiner

PURPOSE:

We have previously developed an automatic mammographic density estimator (MDEST) on digitized film
mammograms (DFM). In this study, we modified MDEST to estimate breast density on full field digital mammograms
(FFDM) and further improved the performance of the MDEST on DFM.

METHOD & MATERIALS:

The breast region is first extracted by breast boundary detection. The pectoral muscle is trimmed if it is an MLO view.
An adaptive dynamic range reduction technique is used to reduce the gray level range in the low frequency
background. The breast image is classified into one of four classes ranging from fatty to very dense based on the
characteristics of their gray level histograms. For each class, an Expectation-Maximization (EM) algorithm is
developed to extract gray level features and a rule-based classifier is trained to segment the dense regions from the fatty
background. The parameters of the new rule-based method are trained separately for FFDMs and DFMs. The breast
density is estimated as the percentage of the segmented dense area relative to the breast area. Two-view FFDMs and the
corresponding DFMs from 99 patients with 202 images in each set were used as the test set. The computerized
segmentation on the two sets of mammograms is compared to the “gold standard”, which is obtained from interactive
thresholding segmentation averaged over 4 MQSA radiologists for each mammogram.

RESULT:

For FFDM, the correlation between the computer estimated percent dense area and the gold standard was 0.94 for CC
view, 0.92 for MLO view, and 0.96 for each breast with the percent dense area estimated as the average of two views.
The corresponding root-mean-square (RMS) error was 4.2%, 4.4%, and 3.5%, respectively. For DFM, the
corresponding correlations were 0.88, 0.86 and 0.92 with RMS error of 7.0%, 7.1% and 5.7%, respectively.

CONCLUSION

The results demonstrate the feasibility of estimating breast density automatically on FFDMs and DFMs using the same
MDEST system by only incorporating a new EM estimation step. The adaptability of the new EM method improved
the robustness of our breast density estimation technique for mammograms acquired with different imaging systems.
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